import time import os import gradio as gr import torch from transformers import AutoModel, AutoTokenizer import meilisearch tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-base-en-v1.5') model = AutoModel.from_pretrained('BAAI/bge-base-en-v1.5') model.eval() cuda_available = torch.cuda.is_available() print(f"CUDA available: {cuda_available}") meilisearch_client = meilisearch.Client("https://edge.meilisearch.com", os.environ["MEILISEARCH_KEY"]) meilisearch_index_name = "docs-embed" meilisearch_index = meilisearch_client.index(meilisearch_index_name) output_options = ["RAG-friendly", "human-friendly"] def search_embeddings(query_text, output_option): start_time_embedding = time.time() query_prefix = 'Represent this sentence for searching code documentation: ' query_tokens = tokenizer(query_prefix + query_text, padding=True, truncation=True, return_tensors='pt', max_length=512) # step1: tokenizer the query with torch.no_grad(): # Compute token embeddings model_output = model(**query_tokens) sentence_embeddings = model_output[0][:, 0] # normalize embeddings sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1) sentence_embeddings_list = sentence_embeddings[0].tolist() elapsed_time_embedding = time.time() - start_time_embedding # step2: search meilisearch start_time_meilisearch = time.time() response = meilisearch_index.search( "", opt_params={"vector": sentence_embeddings_list, "hybrid": {"semanticRatio": 1.0}, "limit": 5, "attributesToRetrieve": ["text", "source", "library"]} ) elapsed_time_meilisearch = time.time() - start_time_meilisearch hits = response["hits"] # step3: present the results in markdown if output_option == "human-friendly": md = f"Stats:\n\nembedding time: {elapsed_time_embedding:.2f}s\n\nmeilisearch time: {elapsed_time_meilisearch:.2f}s\n\n---\n\n" for hit in hits: text, source, library = hit["text"], hit["source"], hit["library"] source = f"[source](https://huggingface.co/docs/{library}/{source})" md += text + f"\n\n{source}\n\n---\n\n" return md elif output_option == "RAG-friendly": hit_texts = [hit["text"] for hit in hits] hit_text_str = "\n\n".join(hit_texts) md = f'Here are some relevant docs regarding to the user query "{query_text}":\n\n' + hit_text_str return md demo = gr.Interface( fn=search_embeddings, inputs=[gr.Textbox(label="enter your query", placeholder="Type Markdown here...", lines=10), gr.Radio(label="Select an output option", choices=output_options, value="RAG-friendly")], outputs=gr.Markdown(), title="HF Docs Emebddings Explorer", allow_flagging="never" ) if __name__ == "__main__": demo.launch()