# coding=utf-8 # Copyright Microsoft Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict from typing import Mapping from transformers.configuration_utils import PretrainedConfig from transformers.onnx import OnnxConfig BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json", "bert-large-cased-whole-word-masking": "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json", "bert-large-uncased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json", "bert-large-cased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json", "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json", "cl-tohoku/bert-base-japanese-char": "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json", "cl-tohoku/bert-base-japanese-char-whole-word-masking": "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json", "TurkuNLP/bert-base-finnish-cased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json", "TurkuNLP/bert-base-finnish-uncased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json", "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class BertConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`BertModel`] or a [`TFBertModel`]. It is used to instantiate a BERT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the BERT [bert-base-uncased](https://huggingface.co/bert-base-uncased) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`BertModel`] or [`TFBertModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or [`TFBertModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. classifier_dropout (`float`, *optional*): The dropout ratio for the classification head. Examples: ```python >>> from transformers import BertModel, BertConfig >>> # Initializing a BERT bert-base-uncased style configuration >>> configuration = BertConfig() >>> # Initializing a model from the bert-base-uncased style configuration >>> model = BertModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "bert" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, position_embedding_type="absolute", use_cache=True, classifier_dropout=None, token_keep_rate=1, token_keep_strategy='cls_attn', token_drop_loc=[9], **kwargs ): super().__init__(pad_token_id=pad_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.use_cache = use_cache self.classifier_dropout = classifier_dropout self.token_keep_rate = token_keep_rate self.token_keep_strategy = token_keep_strategy self.token_drop_loc = token_drop_loc class BertOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ("token_type_ids", {0: "batch", 1: "sequence"}), ] ) BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP = { "microsoft/beit-base-patch16-224-in22k": "https://huggingface.co/microsoft/beit-base-patch16-224-in22k/resolve/main/config.json", # See all BEiT models at https://huggingface.co/models?filter=beit } class BeitConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`BeitModel`]. It is used to instantiate an BEiT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the BEiT [microsoft/beit-base-patch16-224-in22k](https://huggingface.co/microsoft/beit-base-patch16-224-in22k) architecture. Args: vocab_size (`int`, *optional*, defaults to 8092): Vocabulary size of the BEiT model. Defines the number of different image tokens that can be used during pre-training. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. image_size (`int`, *optional*, defaults to `224`): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to `16`): The size (resolution) of each patch. num_channels (`int`, *optional*, defaults to `3`): The number of input channels. use_mask_token (`bool`, *optional*, defaults to `False`): Whether to use a mask token for masked image modeling. use_absolute_position_embeddings (`bool`, *optional*, defaults to `False`): Whether to use BERT-style absolute position embeddings. use_relative_position_bias (`bool`, *optional*, defaults to `False`): Whether to use T5-style relative position embeddings in the self-attention layers. use_shared_relative_position_bias (`bool`, *optional*, defaults to `False`): Whether to use the same relative position embeddings across all self-attention layers of the Transformer. layer_scale_init_value (`float`, *optional*, defaults to 0.1): Scale to use in the self-attention layers. 0.1 for base, 1e-5 for large. Set 0 to disable layer scale. drop_path_rate (`float`, *optional*, defaults to 0.1): Stochastic depth rate per sample (when applied in the main path of residual layers). use_mean_pooling (`bool`, *optional*, defaults to `True`): Whether to mean pool the final hidden states of the patches instead of using the final hidden state of the CLS token, before applying the classification head. out_indices (`List[int]`, *optional*, defaults to `[3, 5, 7, 11]`): Indices of the feature maps to use for semantic segmentation. pool_scales (`Tuple[int]`, *optional*, defaults to `[1, 2, 3, 6]`): Pooling scales used in Pooling Pyramid Module applied on the last feature map. use_auxiliary_head (`bool`, *optional*, defaults to `True`): Whether to use an auxiliary head during training. auxiliary_loss_weight (`float`, *optional*, defaults to 0.4): Weight of the cross-entropy loss of the auxiliary head. auxiliary_channels (`int`, *optional*, defaults to 256): Number of channels to use in the auxiliary head. auxiliary_num_convs (`int`, *optional*, defaults to 1): Number of convolutional layers to use in the auxiliary head. auxiliary_concat_input (`bool`, *optional*, defaults to `False`): Whether to concatenate the output of the auxiliary head with the input before the classification layer. semantic_loss_ignore_index (`int`, *optional*, defaults to 255): The index that is ignored by the loss function of the semantic segmentation model. Example: ```python >>> from transformers import BeitModel, BeitConfig >>> # Initializing a BEiT beit-base-patch16-224-in22k style configuration >>> configuration = BeitConfig() >>> # Initializing a model from the beit-base-patch16-224-in22k style configuration >>> model = BeitModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "beit" def __init__( self, vocab_size=8192, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, initializer_range=0.02, layer_norm_eps=1e-12, is_encoder_decoder=False, image_size=224, patch_size=16, num_channels=3, use_mask_token=False, use_absolute_position_embeddings=False, use_relative_position_bias=False, use_shared_relative_position_bias=False, layer_scale_init_value=0.1, drop_path_rate=0.1, use_mean_pooling=True, out_indices=[3, 5, 7, 11], pool_scales=[1, 2, 3, 6], use_auxiliary_head=True, auxiliary_loss_weight=0.4, auxiliary_channels=256, auxiliary_num_convs=1, auxiliary_concat_input=False, semantic_loss_ignore_index=255, token_keep_rate=1, token_keep_strategy='cls_attn', token_drop_loc=[3, 6, 9], sparse_random_attn=None, sparse_local_attn=1, attn_block_size=1, num_cls_tokens=1, token_3d_order='none', **kwargs ): super().__init__(**kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.use_mask_token = use_mask_token self.use_absolute_position_embeddings = use_absolute_position_embeddings self.use_relative_position_bias = use_relative_position_bias self.use_shared_relative_position_bias = use_shared_relative_position_bias self.layer_scale_init_value = layer_scale_init_value self.drop_path_rate = drop_path_rate self.use_mean_pooling = use_mean_pooling # decode head attributes (semantic segmentation) self.out_indices = out_indices self.pool_scales = pool_scales # auxiliary head attributes (semantic segmentation) self.use_auxiliary_head = use_auxiliary_head self.auxiliary_loss_weight = auxiliary_loss_weight self.auxiliary_channels = auxiliary_channels self.auxiliary_num_convs = auxiliary_num_convs self.auxiliary_concat_input = auxiliary_concat_input self.semantic_loss_ignore_index = semantic_loss_ignore_index # node sparsification self.token_keep_rate = token_keep_rate self.token_keep_strategy = token_keep_strategy self.token_drop_loc = token_drop_loc # edge sparsification self.sparse_random_attn = sparse_random_attn self.sparse_local_attn = sparse_local_attn self.attn_block_size = attn_block_size self.num_cls_tokens = num_cls_tokens # token order self.token_3d_order = token_3d_order