#!/usr/bin/env python from __future__ import annotations import functools import sys import gradio as gr import huggingface_hub import PIL.Image import torch import torch.nn as nn sys.path.insert(0, "Anime2Sketch") from data import read_img_path, tensor_to_img from model import UnetGenerator TITLE = "Anime2Sketch" DESCRIPTION = "https://github.com/Mukosame/Anime2Sketch" def load_model(device: torch.device) -> nn.Module: norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False) model = UnetGenerator(3, 1, 8, 64, norm_layer=norm_layer, use_dropout=False) path = huggingface_hub.hf_hub_download("public-data/Anime2Sketch", "netG.pth") ckpt = torch.load(path) for key in list(ckpt.keys()): if "module." in key: ckpt[key.replace("module.", "")] = ckpt[key] del ckpt[key] model.load_state_dict(ckpt) model.to(device) model.eval() return model device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = load_model(device) @torch.inference_mode() def run(image_file: str, load_size: int = 512) -> PIL.Image.Image: tensor, orig_size = read_img_path(image_file, load_size) tensor = tensor.to(device) out = model(tensor) res = tensor_to_img(out) res = PIL.Image.fromarray(res) res = res.resize(orig_size, PIL.Image.Resampling.BICUBIC) return res demo = gr.Interface( fn=run, inputs=gr.Image(label="Input", type="filepath"), outputs=gr.Image(label="Output"), examples=["Anime2Sketch/test_samples/madoka.jpg"], title=TITLE, description=DESCRIPTION, ) if __name__ == "__main__": demo.queue().launch()