# This file is adapted from https://github.com/lllyasviel/ControlNet/blob/f4748e3630d8141d7765e2bd9b1e348f47847707/gradio_pose2image.py # The original license file is LICENSE.ControlNet in this repo. import gradio as gr def create_demo(process, max_images=12, default_num_images=3): with gr.Blocks() as demo: with gr.Row(): gr.Markdown('## Control Stable Diffusion with Human Pose') with gr.Row(): with gr.Column(): input_image = gr.Image(source='upload', type='numpy') prompt = gr.Textbox(label='Prompt') run_button = gr.Button(label='Run') with gr.Accordion('Advanced options', open=False): is_pose_image = gr.Checkbox(label='Is pose image', value=False) gr.Markdown( 'You can use [PoseMaker2](https://huggingface.co/spaces/jonigata/PoseMaker2) to create pose images.' ) num_samples = gr.Slider(label='Images', minimum=1, maximum=max_images, value=default_num_images, step=1) image_resolution = gr.Slider(label='Image Resolution', minimum=256, maximum=512, value=512, step=256) detect_resolution = gr.Slider(label='OpenPose Resolution', minimum=128, maximum=512, value=512, step=1) num_steps = gr.Slider(label='Steps', minimum=1, maximum=100, value=20, step=1) guidance_scale = gr.Slider(label='Guidance Scale', minimum=0.1, maximum=30.0, value=9.0, step=0.1) seed = gr.Slider(label='Seed', minimum=-1, maximum=2147483647, step=1, randomize=True) a_prompt = gr.Textbox( label='Added Prompt', value='best quality, extremely detailed') n_prompt = gr.Textbox( label='Negative Prompt', value= 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' ) with gr.Column(): result = gr.Gallery(label='Output', show_label=False, elem_id='gallery').style(grid=2, height='auto') inputs = [ input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, num_steps, guidance_scale, seed, is_pose_image, ] prompt.submit(fn=process, inputs=inputs, outputs=result) run_button.click(fn=process, inputs=inputs, outputs=result, api_name='pose') return demo if __name__ == '__main__': from model import Model model = Model() demo = create_demo(model.process_pose) demo.queue().launch()