# This file is adapted from gradio_*.py in https://github.com/lllyasviel/ControlNet/tree/f4748e3630d8141d7765e2bd9b1e348f47847707 # The original license file is LICENSE.ControlNet in this repo. from __future__ import annotations import pathlib import sys import cv2 import numpy as np import PIL.Image import torch from diffusers import (ControlNetModel, DiffusionPipeline, StableDiffusionControlNetPipeline, UniPCMultistepScheduler) repo_dir = pathlib.Path(__file__).parent submodule_dir = repo_dir / 'ControlNet' sys.path.append(submodule_dir.as_posix()) from annotator.canny import apply_canny from annotator.hed import apply_hed, nms from annotator.midas import apply_midas from annotator.mlsd import apply_mlsd from annotator.openpose import apply_openpose from annotator.uniformer import apply_uniformer from annotator.util import HWC3, resize_image from share import * CONTROLNET_MODEL_IDS = { 'canny': 'lllyasviel/sd-controlnet-canny', 'hough': 'lllyasviel/sd-controlnet-mlsd', 'hed': 'lllyasviel/sd-controlnet-hed', 'scribble': 'lllyasviel/sd-controlnet-scribble', 'pose': 'lllyasviel/sd-controlnet-openpose', 'seg': 'lllyasviel/sd-controlnet-seg', 'depth': 'lllyasviel/sd-controlnet-depth', 'normal': 'lllyasviel/sd-controlnet-normal', } def download_all_controlnet_weights(): for model_id in CONTROLNET_MODEL_IDS.values(): ControlNetModel.from_pretrained(model_id) class Model: def __init__(self, base_model_id: str = 'runwayml/stable-diffusion-v1-5', task_name: str = 'canny'): self.base_model_id = '' self.task_name = '' self.pipe = self.load_pipe(base_model_id, task_name) def load_pipe(self, base_model_id: str, task_name) -> DiffusionPipeline: if base_model_id == self.base_model_id and task_name == self.task_name: return self.pipe model_id = CONTROLNET_MODEL_IDS[task_name] controlnet = ControlNetModel.from_pretrained(model_id, torch_dtype=torch.float16) pipe = StableDiffusionControlNetPipeline.from_pretrained( base_model_id, safety_checker=None, controlnet=controlnet, torch_dtype=torch.float16) pipe.scheduler = UniPCMultistepScheduler.from_config( pipe.scheduler.config) pipe.enable_xformers_memory_efficient_attention() pipe.enable_model_cpu_offload() self.base_model_id = base_model_id self.task_name = task_name return pipe def set_base_model(self, base_model_id: str) -> str: self.pipe = self.load_pipe(base_model_id, self.task_name) return self.base_model_id def load_controlnet_weight(self, task_name: str) -> None: if task_name == self.task_name: return model_id = CONTROLNET_MODEL_IDS[task_name] controlnet = ControlNetModel.from_pretrained(model_id, torch_dtype=torch.float16) from accelerate import cpu_offload_with_hook cpu_offload_with_hook(controlnet, torch.device('cuda:0')) self.pipe.controlnet = controlnet self.task_name = task_name def get_prompt(self, prompt: str, additional_prompt: str) -> str: if not prompt: prompt = additional_prompt else: prompt = f'{prompt}, {additional_prompt}' return prompt def run_pipe( self, prompt: str, negative_prompt: str, control_image: PIL.Image.Image, num_images: int, num_steps: int, guidance_scale: float, seed: int, ): generator = torch.Generator().manual_seed(seed) return self.pipe(prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_images_per_prompt=num_images, num_inference_steps=num_steps, generator=generator, image=control_image) def process( self, task_name: str, prompt: str, additional_prompt: str, negative_prompt: str, control_image: PIL.Image.Image, vis_control_image: PIL.Image.Image, num_samples: int, num_steps: int, guidance_scale: float, seed: int, ): self.load_controlnet_weight(task_name) results = self.run_pipe( prompt=self.get_prompt(prompt, additional_prompt), negative_prompt=negative_prompt, control_image=control_image, num_images=num_samples, num_steps=num_steps, guidance_scale=guidance_scale, seed=seed, ) return [vis_control_image] + results.images @staticmethod def preprocess_canny( input_image: np.ndarray, image_resolution: int, low_threshold: int, high_threshold: int, ) -> tuple[PIL.Image.Image, PIL.Image.Image]: image = resize_image(HWC3(input_image), image_resolution) control_image = apply_canny(image, low_threshold, high_threshold) control_image = HWC3(control_image) vis_control_image = 255 - control_image return PIL.Image.fromarray(control_image), PIL.Image.fromarray( vis_control_image) @torch.inference_mode() def process_canny( self, input_image: np.ndarray, prompt: str, additional_prompt: str, negative_prompt: str, num_samples: int, image_resolution: int, num_steps: int, guidance_scale: float, seed: int, low_threshold: int, high_threshold: int, ) -> list[PIL.Image.Image]: control_image, vis_control_image = self.preprocess_canny( input_image=input_image, image_resolution=image_resolution, low_threshold=low_threshold, high_threshold=high_threshold, ) return self.process( task_name='canny', prompt=prompt, additional_prompt=additional_prompt, negative_prompt=negative_prompt, control_image=control_image, vis_control_image=vis_control_image, num_samples=num_samples, num_steps=num_steps, guidance_scale=guidance_scale, seed=seed, ) @staticmethod def preprocess_hough( input_image: np.ndarray, image_resolution: int, detect_resolution: int, value_threshold: float, distance_threshold: float, ) -> tuple[PIL.Image.Image, PIL.Image.Image]: input_image = HWC3(input_image) control_image = apply_mlsd( resize_image(input_image, detect_resolution), value_threshold, distance_threshold) control_image = HWC3(control_image) image = resize_image(input_image, image_resolution) H, W = image.shape[:2] control_image = cv2.resize(control_image, (W, H), interpolation=cv2.INTER_NEAREST) vis_control_image = 255 - cv2.dilate( control_image, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1) return PIL.Image.fromarray(control_image), PIL.Image.fromarray( vis_control_image) @torch.inference_mode() def process_hough( self, input_image: np.ndarray, prompt: str, additional_prompt: str, negative_prompt: str, num_samples: int, image_resolution: int, detect_resolution: int, num_steps: int, guidance_scale: float, seed: int, value_threshold: float, distance_threshold: float, ) -> list[PIL.Image.Image]: control_image, vis_control_image = self.preprocess_hough( input_image=input_image, image_resolution=image_resolution, detect_resolution=detect_resolution, value_threshold=value_threshold, distance_threshold=distance_threshold, ) return self.process( task_name='hough', prompt=prompt, additional_prompt=additional_prompt, negative_prompt=negative_prompt, control_image=control_image, vis_control_image=vis_control_image, num_samples=num_samples, num_steps=num_steps, guidance_scale=guidance_scale, seed=seed, ) @staticmethod def preprocess_hed( input_image: np.ndarray, image_resolution: int, detect_resolution: int, ) -> tuple[PIL.Image.Image, PIL.Image.Image]: input_image = HWC3(input_image) control_image = apply_hed(resize_image(input_image, detect_resolution)) control_image = HWC3(control_image) image = resize_image(input_image, image_resolution) H, W = image.shape[:2] control_image = cv2.resize(control_image, (W, H), interpolation=cv2.INTER_LINEAR) return PIL.Image.fromarray(control_image), PIL.Image.fromarray( control_image) @torch.inference_mode() def process_hed( self, input_image: np.ndarray, prompt: str, additional_prompt: str, negative_prompt: str, num_samples: int, image_resolution: int, detect_resolution: int, num_steps: int, guidance_scale: float, seed: int, ) -> list[PIL.Image.Image]: control_image, vis_control_image = self.preprocess_hed( input_image=input_image, image_resolution=image_resolution, detect_resolution=detect_resolution, ) return self.process( task_name='hed', prompt=prompt, additional_prompt=additional_prompt, negative_prompt=negative_prompt, control_image=control_image, vis_control_image=vis_control_image, num_samples=num_samples, num_steps=num_steps, guidance_scale=guidance_scale, seed=seed, ) @staticmethod def preprocess_scribble( input_image: np.ndarray, image_resolution: int, ) -> tuple[PIL.Image.Image, PIL.Image.Image]: image = resize_image(HWC3(input_image), image_resolution) control_image = np.zeros_like(image, dtype=np.uint8) control_image[np.min(image, axis=2) < 127] = 255 vis_control_image = 255 - control_image return PIL.Image.fromarray(control_image), PIL.Image.fromarray( vis_control_image) @torch.inference_mode() def process_scribble( self, input_image: np.ndarray, prompt: str, additional_prompt: str, negative_prompt: str, num_samples: int, image_resolution: int, num_steps: int, guidance_scale: float, seed: int, ) -> list[PIL.Image.Image]: control_image, vis_control_image = self.preprocess_scribble( input_image=input_image, image_resolution=image_resolution, ) return self.process( task_name='scribble', prompt=prompt, additional_prompt=additional_prompt, negative_prompt=negative_prompt, control_image=control_image, vis_control_image=vis_control_image, num_samples=num_samples, num_steps=num_steps, guidance_scale=guidance_scale, seed=seed, ) @staticmethod def preprocess_scribble_interactive( input_image: np.ndarray, image_resolution: int, ) -> tuple[PIL.Image.Image, PIL.Image.Image]: image = resize_image(HWC3(input_image['mask'][:, :, 0]), image_resolution) control_image = np.zeros_like(image, dtype=np.uint8) control_image[np.min(image, axis=2) > 127] = 255 vis_control_image = 255 - control_image return PIL.Image.fromarray(control_image), PIL.Image.fromarray( vis_control_image) @torch.inference_mode() def process_scribble_interactive( self, input_image: np.ndarray, prompt: str, additional_prompt: str, negative_prompt: str, num_samples: int, image_resolution: int, num_steps: int, guidance_scale: float, seed: int, ) -> list[PIL.Image.Image]: control_image, vis_control_image = self.preprocess_scribble_interactive( input_image=input_image, image_resolution=image_resolution, ) return self.process( task_name='scribble', prompt=prompt, additional_prompt=additional_prompt, negative_prompt=negative_prompt, control_image=control_image, vis_control_image=vis_control_image, num_samples=num_samples, num_steps=num_steps, guidance_scale=guidance_scale, seed=seed, ) @staticmethod def preprocess_fake_scribble( input_image: np.ndarray, image_resolution: int, detect_resolution: int, ) -> tuple[PIL.Image.Image, PIL.Image.Image]: input_image = HWC3(input_image) control_image = apply_hed(resize_image(input_image, detect_resolution)) control_image = HWC3(control_image) image = resize_image(input_image, image_resolution) H, W = image.shape[:2] control_image = cv2.resize(control_image, (W, H), interpolation=cv2.INTER_LINEAR) control_image = nms(control_image, 127, 3.0) control_image = cv2.GaussianBlur(control_image, (0, 0), 3.0) control_image[control_image > 4] = 255 control_image[control_image < 255] = 0 vis_control_image = 255 - control_image return PIL.Image.fromarray(control_image), PIL.Image.fromarray( vis_control_image) @torch.inference_mode() def process_fake_scribble( self, input_image: np.ndarray, prompt: str, additional_prompt: str, negative_prompt: str, num_samples: int, image_resolution: int, detect_resolution: int, num_steps: int, guidance_scale: float, seed: int, ) -> list[PIL.Image.Image]: control_image, vis_control_image = self.preprocess_fake_scribble( input_image=input_image, image_resolution=image_resolution, detect_resolution=detect_resolution, ) return self.process( task_name='scribble', prompt=prompt, additional_prompt=additional_prompt, negative_prompt=negative_prompt, control_image=control_image, vis_control_image=vis_control_image, num_samples=num_samples, num_steps=num_steps, guidance_scale=guidance_scale, seed=seed, ) @staticmethod def preprocess_pose( input_image: np.ndarray, image_resolution: int, detect_resolution: int, ) -> tuple[PIL.Image.Image, PIL.Image.Image]: input_image = HWC3(input_image) control_image, _ = apply_openpose( resize_image(input_image, detect_resolution)) control_image = HWC3(control_image) image = resize_image(input_image, image_resolution) H, W = image.shape[:2] control_image = cv2.resize(control_image, (W, H), interpolation=cv2.INTER_NEAREST) return PIL.Image.fromarray(control_image), PIL.Image.fromarray( control_image) @torch.inference_mode() def process_pose( self, input_image: np.ndarray, prompt: str, additional_prompt: str, negative_prompt: str, num_samples: int, image_resolution: int, detect_resolution: int, num_steps: int, guidance_scale: float, seed: int, ) -> list[PIL.Image.Image]: control_image, vis_control_image = self.preprocess_pose( input_image=input_image, image_resolution=image_resolution, detect_resolution=detect_resolution, ) return self.process( task_name='pose', prompt=prompt, additional_prompt=additional_prompt, negative_prompt=negative_prompt, control_image=control_image, vis_control_image=vis_control_image, num_samples=num_samples, num_steps=num_steps, guidance_scale=guidance_scale, seed=seed, ) @staticmethod def preprocess_seg( input_image: np.ndarray, image_resolution: int, detect_resolution: int, ) -> tuple[PIL.Image.Image, PIL.Image.Image]: input_image = HWC3(input_image) control_image = apply_uniformer( resize_image(input_image, detect_resolution)) image = resize_image(input_image, image_resolution) H, W = image.shape[:2] control_image = cv2.resize(control_image, (W, H), interpolation=cv2.INTER_NEAREST) return PIL.Image.fromarray(control_image), PIL.Image.fromarray( control_image) @torch.inference_mode() def process_seg( self, input_image: np.ndarray, prompt: str, additional_prompt: str, negative_prompt: str, num_samples: int, image_resolution: int, detect_resolution: int, num_steps: int, guidance_scale: float, seed: int, ) -> list[PIL.Image.Image]: control_image, vis_control_image = self.preprocess_seg( input_image=input_image, image_resolution=image_resolution, detect_resolution=detect_resolution, ) return self.process( task_name='seg', prompt=prompt, additional_prompt=additional_prompt, negative_prompt=negative_prompt, control_image=control_image, vis_control_image=vis_control_image, num_samples=num_samples, num_steps=num_steps, guidance_scale=guidance_scale, seed=seed, ) @staticmethod def preprocess_depth( input_image: np.ndarray, image_resolution: int, detect_resolution: int, ) -> tuple[PIL.Image.Image, PIL.Image.Image]: input_image = HWC3(input_image) control_image, _ = apply_midas( resize_image(input_image, detect_resolution)) control_image = HWC3(control_image) return PIL.Image.fromarray(control_image), PIL.Image.fromarray( control_image) @torch.inference_mode() def process_depth( self, input_image: np.ndarray, prompt: str, additional_prompt: str, negative_prompt: str, num_samples: int, image_resolution: int, detect_resolution: int, num_steps: int, guidance_scale: float, seed: int, ) -> list[PIL.Image.Image]: control_image, vis_control_image = self.preprocess_depth( input_image=input_image, image_resolution=image_resolution, detect_resolution=detect_resolution, ) return self.process( task_name='depth', prompt=prompt, additional_prompt=additional_prompt, negative_prompt=negative_prompt, control_image=control_image, vis_control_image=vis_control_image, num_samples=num_samples, num_steps=num_steps, guidance_scale=guidance_scale, seed=seed, ) @staticmethod def preprocess_normal( input_image: np.ndarray, image_resolution: int, detect_resolution: int, bg_threshold, ) -> tuple[PIL.Image.Image, PIL.Image.Image]: input_image = HWC3(input_image) _, control_image = apply_midas(resize_image(input_image, detect_resolution), bg_th=bg_threshold) control_image = HWC3(control_image) image = resize_image(input_image, image_resolution) H, W = image.shape[:2] control_image = cv2.resize(control_image, (W, H), interpolation=cv2.INTER_LINEAR) return PIL.Image.fromarray(control_image), PIL.Image.fromarray( control_image) @torch.inference_mode() def process_normal( self, input_image: np.ndarray, prompt: str, additional_prompt: str, negative_prompt: str, num_samples: int, image_resolution: int, detect_resolution: int, num_steps: int, guidance_scale: float, seed: int, bg_threshold, ) -> list[PIL.Image.Image]: control_image, vis_control_image = self.preprocess_normal( input_image=input_image, image_resolution=image_resolution, detect_resolution=detect_resolution, bg_threshold=bg_threshold, ) return self.process( task_name='normal', prompt=prompt, additional_prompt=additional_prompt, negative_prompt=negative_prompt, control_image=control_image, vis_control_image=vis_control_image, num_samples=num_samples, num_steps=num_steps, guidance_scale=guidance_scale, seed=seed, )