import gradio as gr import torch from transformers import ViTForImageClassification, ViTFeatureExtractor from transformers import AutoModelForImageClassification, AutoFeatureExtractor from PIL import Image # Load crop disease model (ViT) model = ViTForImageClassification.from_pretrained("iamomtiwari/VITPEST") feature_extractor = ViTFeatureExtractor.from_pretrained("iamomtiwari/VITPEST") # Load fallback model (ResNet50 for general image classification) fallback_model = AutoModelForImageClassification.from_pretrained("microsoft/resnet-50") fallback_feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/resnet-50") # Define class labels with treatment advice class_labels = { 1: {"label": "Stage Corn Common Rust", "treatment": "Apply fungicides as soon as symptoms are noticed. Practice crop rotation and remove infected plants."}, 2: {"label": "Stage Corn Gray Leaf Spot", "treatment": "Rotate crops to non-host plants, apply resistant varieties, and use fungicides as needed."}, 3: {"label": "Stage Safe Corn Healthy", "treatment": "Continue good agricultural practices: ensure proper irrigation, nutrient supply, and monitor for pests."}, 4: {"label": "Stage Corn Northern Leaf Blight", "treatment": "Remove and destroy infected plant debris, apply fungicides, and rotate crops."}, 5: {"label": "Stage Rice Brown Spot", "treatment": "Use resistant varieties, improve field drainage, and apply fungicides if necessary."}, 6: {"label": "Stage Safe Rice Healthy", "treatment": "Maintain proper irrigation, fertilization, and pest control measures."}, 7: {"label": "Stage Rice Leaf Blast", "treatment": "Use resistant varieties, apply fungicides during high-risk periods, and practice good field management."}, 8: {"label": "Stage Rice Neck Blast", "treatment": "Plant resistant varieties, improve nutrient management, and apply fungicides if symptoms appear."}, 9: {"label": "Stage Sugarcane Bacterial Blight", "treatment": "Use disease-free planting material, practice crop rotation, and destroy infected plants."}, 10: {"label": "Stage Safe Sugarcane Healthy", "treatment": "Maintain healthy soil conditions and proper irrigation."}, 11: {"label": "Stage Sugarcane Red Rot", "treatment": "Plant resistant varieties and ensure good drainage."}, 12: {"label": "Stage Wheat Brown Rust", "treatment": "Apply fungicides and practice crop rotation with non-host crops."}, 13: {"label": "Stage Safe Wheat Healthy", "treatment": "Continue with good management practices, including proper fertilization and weed control."}, 14: {"label": "Stage Wheat Yellow Rust", "treatment": "Use resistant varieties, apply fungicides, and rotate crops."} } # Mapping label indices to class labels labels_list = [class_labels[i]["label"] for i in range(1, 15)] # Confidence threshold for ViT model CONFIDENCE_THRESHOLD = 0.5 # Inference function with fuzzy confidence def predict(image): # First, use the crop disease model (ViT) inputs = feature_extractor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits confidences = torch.softmax(logits, dim=-1) predicted_class_idx = logits.argmax(-1).item() confidence = confidences[0, predicted_class_idx].item() # If confidence is below the threshold, use the fallback model if confidence < CONFIDENCE_THRESHOLD: inputs_fallback = fallback_feature_extractor(images=image, return_tensors="pt") with torch.no_grad(): outputs_fallback = fallback_model(**inputs_fallback) logits_fallback = outputs_fallback.logits confidences_fallback = torch.softmax(logits_fallback, dim=-1) predicted_class_idx_fallback = logits_fallback.argmax(-1).item() fallback_confidence = confidences_fallback[0, predicted_class_idx_fallback].item() # Get the fallback prediction label fallback_label = fallback_model.config.id2label[predicted_class_idx_fallback] return ( f"Low confidence in ViT model ({confidence * 100:.2f}%).\n" f"ResNet-50 predicts: {fallback_label} ({fallback_confidence * 100:.2f}%).\n\n" "If this does not match your input, please try another image." ) # If confidence is above the threshold, return the ViT prediction and treatment advice predicted_label = labels_list[predicted_class_idx] treatment_advice = class_labels[predicted_class_idx + 1]["treatment"] return ( f"Disease: {predicted_label} ({confidence * 100:.2f}%)\n\n" f"Treatment Advice: {treatment_advice}" ) # Create Gradio Interface interface = gr.Interface( fn=predict, inputs="image", outputs="text", title="Crop Disease Detection", description="Upload an image of a crop plant to detect diseases. If confidence is low, ResNet-50 will classify the image." ) if __name__ == "__main__": interface.launch()