import gradio as gr import torch from transformers import PegasusForConditionalGeneration, PegasusTokenizer from sentence_splitter import SentenceSplitter, split_text_into_sentences model_name = 'tuner007/pegasus_paraphrase' torch_device = 'cuda' if torch.cuda.is_available() else 'cpu' tokenizer = PegasusTokenizer.from_pretrained(model_name) model = PegasusForConditionalGeneration.from_pretrained(model_name).to(torch_device) def get_response(input_text, num_return_sequences): batch = tokenizer.prepare_seq2seq_batch([input_text], truncation=True, padding='longest', max_length=10000, return_tensors="pt").to(torch_device) translated = model.generate(**batch, num_beams=10, num_return_sequences=num_return_sequences, temperature=1.5) tgt_text = tokenizer.batch_decode(translated, skip_special_tokens=True) return tgt_text def get_response_from_text( context="I am a student at the University of Washington. I am taking a course called Data Science."): splitter = SentenceSplitter(language='en') sentence_list = splitter.split(context) paraphrase = [] for i in sentence_list: a = get_response(i, 1) paraphrase.append(a) paraphrase2 = [' '.join(x) for x in paraphrase] paraphrase3 = [' '.join(x for x in paraphrase2)] paraphrased_text = str(paraphrase3).strip('[]').strip("'") return paraphrased_text def greet(context): return get_response_from_text(context) iface = gr.Interface(fn=greet, inputs="text", outputs="text") iface.launch()