import gradio as gr from loadimg import load_img import spaces from transformers import AutoModelForImageSegmentation import torch from torchvision import transforms import moviepy.editor as mp from pydub import AudioSegment from PIL import Image import numpy as np import os import tempfile import uuid import schedule import time import threading import shutil torch.set_float32_matmul_precision("medium") device = "cuda" if torch.cuda.is_available() else "cpu" birefnet = AutoModelForImageSegmentation.from_pretrained( "ZhengPeng7/BiRefNet", trust_remote_code=True ) birefnet.to(device) transform_image = transforms.Compose( [ transforms.Resize((1024, 1024)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) def load_background_image(bg, image_size): """Loads and resizes the background image based on the provided input.""" try: if isinstance(bg, str) and bg.startswith("#"): color_rgb = tuple(int(bg[i:i+2], 16) for i in (1, 3, 5)) return Image.new("RGBA", image_size, color_rgb + (255,)) elif isinstance(bg, Image.Image): return bg.convert("RGBA").resize(image_size) else: return Image.open(bg).convert("RGBA").resize(image_size) except Exception as e: print(f"Error opening background image: {e}") return None def clear_temp_directory(): temp_dir = "temp" if os.path.exists(temp_dir): for filename in os.listdir(temp_dir): file_path = os.path.join(temp_dir, filename) try: if os.path.isfile(file_path) or os.path.islink(file_path): os.unlink(file_path) elif os.path.isdir(file_path): shutil.rmtree(file_path) except Exception as e: print(f"Failed to delete {file_path}. Reason: {e}") def run_scheduler(): schedule.every(10).minutes.do(clear_temp_directory) while True: schedule.run_pending() time.sleep(1) # Start the scheduler in a separate thread scheduler_thread = threading.Thread(target=run_scheduler) scheduler_thread.daemon = True # Allow the main thread to exit even if the scheduler is running scheduler_thread.start() @spaces.GPU def process_video(input_video_path, bg_type="Color", bg_image_path=None, bg_video_path=None, bg_color="#00FF00", output_fps=0, video_handling_mode="slow_down"): """Processes the input video and replaces the background.""" try: # Load the video using moviepy video = mp.VideoFileClip(input_video_path) # Load original fps if fps value is equal to 0 if output_fps == 0: output_fps = video.fps # Extract audio from the video audio = video.audio # Extract frames at the specified FPS frames = video.iter_frames(fps=output_fps) # Process each frame for background removal processed_frames = [] yield gr.update(visible=True), gr.update(visible=False), gr.update(value=0) if bg_type == "Video": background_video = mp.VideoFileClip(bg_video_path) if background_video.duration < video.duration: if video_handling_mode == "slow_down": background_video = background_video.fx(mp.vfx.speedx, factor=video.duration / background_video.duration) else: # video_handling_mode == "loop" background_video = mp.concatenate_videoclips([background_video] * int(video.duration / background_video.duration + 1)) background_frames = list(background_video.iter_frames(fps=output_fps)) # Convert to list else: background_frames = None bg_frame_index = 0 # Initialize background frame index total_frames = len(list(frames)) frames = video.iter_frames(fps=output_fps) batch_size = 4 for i in range(0, total_frames, batch_size): batch_frames = list(frames)[i:i+batch_size] processed_batch = [] for frame in batch_frames: pil_image = Image.fromarray(frame) if bg_type == "Color": background_image = load_background_image(bg_color, pil_image.size) elif bg_type == "Image": background_image = load_background_image(bg_image_path, pil_image.size) elif bg_type == "Video": if video_handling_mode == "slow_down": background_frame = background_frames[bg_frame_index % len(background_frames)] bg_frame_index += 1 background_image = Image.fromarray(background_frame) else: # video_handling_mode == "loop" background_frame = background_frames[bg_frame_index % len(background_frames)] bg_frame_index += 1 background_image = Image.fromarray(background_frame) else: background_image = None # Default to original image if no background is selected if background_image is not None: processed_image = process(pil_image, background_image) else: processed_image = pil_image processed_batch.append(np.array(processed_image)) processed_frames.extend(processed_batch) progress = (i + len(batch_frames)) / total_frames yield processed_batch[-1], None, gr.update(value=progress) # Update progress bar # Create a new video from the processed frames processed_video = mp.ImageSequenceClip(processed_frames, fps=output_fps) # Add the original audio back to the processed video processed_video = processed_video.set_audio(audio) # Save the processed video to a temporary file temp_dir = "temp" os.makedirs(temp_dir, exist_ok=True) unique_filename = str(uuid.uuid4()) + ".mp4" temp_filepath = os.path.join(temp_dir, unique_filename) processed_video.write_videofile(temp_filepath, codec="libx264") yield gr.update(visible=False), gr.update(visible=True), gr.update(value=1) # Return the path to the temporary file yield processed_batch[-1], temp_filepath except Exception as e: error_message = f"Error processing video: {e}" print(error_message) yield gr.update(visible=False), gr.update(visible=True), gr.update(value=0) yield None, error_message def process(image, bg): image_size = image.size input_images = transform_image(image).unsqueeze(0).to("cuda") # Prediction with torch.no_grad(): preds = birefnet(input_images)[-1].sigmoid().cpu() pred = preds[0].squeeze() pred_pil = transforms.ToPILImage()(pred) mask = pred_pil.resize(image_size) # Composite the image onto the background using the mask image = Image.composite(image, bg, mask) return image with gr.Blocks(theme=gr.themes.Ocean()) as demo: gr.Markdown("# Video Background Remover & Changer\n### You can replace image background with any color, image or video.\nNOTE: As this Space is running on ZERO GPU it has limit. It can handle approx 200frmaes at once. So, if you have big video than use small chunks or Duplicate this space.") with gr.Row(): in_video = gr.Video(label="Input Video", interactive=True) stream_image = gr.Image(label="Streaming Output", visible=False) out_video = gr.Video(label="Final Output Video") submit_button = gr.Button("Change Background", interactive=True) progress_bar = gr.ProgressBar(label="Processing Progress") with gr.Row(): fps_slider = gr.Slider( minimum=0, maximum=60, step=1, value=0, label="Output FPS (0 will inherit the original fps value)", interactive=True ) bg_type = gr.Radio(["Color", "Image", "Video"], label="Background Type", value="Color", interactive=True) color_picker = gr.ColorPicker(label="Background Color", value="#00FF00", visible=True, interactive=True) bg_image = gr.Image(label="Background Image", type="filepath", visible=False, interactive=True) bg_video = gr.Video(label="Background Video", visible=False, interactive=True) with gr.Column(visible=False) as video_handling_options: video_handling_radio = gr.Radio(["slow_down", "loop"], label="Video Handling", value="slow_down", interactive=True) def update_visibility(bg_type): if bg_type == "Color": return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) elif bg_type == "Image": return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False) elif bg_type == "Video": return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True) else: return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) bg_type.change(update_visibility, inputs=bg_type, outputs=[color_picker, bg_image, bg_video, video_handling_options]) examples = gr.Examples( [ ["rickroll-2sec.mp4", "Video", None, "background.mp4"], ["rickroll-2sec.mp4", "Image", "images.webp", None], ["rickroll-2sec.mp4", "Color", None, None], ], inputs=[in_video, bg_type, bg_image, bg_video], outputs=[stream_image, out_video, progress_bar], fn=process_video, cache_examples=True, cache_mode="eager", ) submit_button.click( process_video, inputs=[in_video, bg_type, bg_image, bg_video, color_picker, fps_slider, video_handling_radio], outputs=[stream_image, out_video, progress_bar], ) if __name__ == "__main__": demo.launch(show_error=True)