import os import sys # os.environ["PYOPENGL_PLATFORM"] = "egl" from transformers import Wav2Vec2Processor from visualise.rendering import RenderTool sys.path.append(os.getcwd()) from glob import glob import numpy as np import json import smplx as smpl from nets import * from trainer.options import parse_args from data_utils import torch_data from trainer.config import load_JsonConfig import torch import torch.nn as nn import torch.nn.functional as F from torch.utils import data from scripts.diversity import init_model, init_dataloader, get_vertices from data_utils.lower_body import part2full, pred2poses, poses2pred, poses2poses from data_utils.rotation_conversion import rotation_6d_to_matrix, matrix_to_axis_angle import time global_orient = torch.tensor([3.0747, -0.0158, -0.0152]) def infer(data_root, g_body, g_face, g_body2, exp_name, infer_loader, infer_set, device, norm_stats, smplx, smplx_model, rendertool, args=None, config=None, var=None): am = Wav2Vec2Processor.from_pretrained("vitouphy/wav2vec2-xls-r-300m-phoneme") am_sr = 16000 num_sample = 1 face = False if face: body_static = torch.zeros([1, 162], device='cuda') body_static[:, 6:9] = torch.tensor([3.0747, -0.0158, -0.0152]).reshape(1, 3).repeat(body_static.shape[0], 1) stand = False j = 0 gt_0 = None for bat in infer_loader: poses_ = bat['poses'].to(torch.float32).to(device) if poses_.shape[-1] == 300: j = j + 1 if j > 1000: continue id = bat['speaker'].to('cuda') - 20 if config.Data.pose.expression: expression = bat['expression'].to(device).to(torch.float32) poses = torch.cat([poses_, expression], dim=1) else: poses = poses_ cur_wav_file = bat['aud_file'][0] betas = bat['betas'][0].to(torch.float64).to('cuda') # betas = torch.zeros([1, 300], dtype=torch.float64).to('cuda') gt = poses.to('cuda').squeeze().transpose(1, 0) if config.Data.pose.normalization: gt = denormalize(gt, norm_stats[0], norm_stats[1]).squeeze(dim=0) if config.Data.pose.convert_to_6d: if config.Data.pose.expression: gt_exp = gt[:, -100:] gt = gt[:, :-100] gt = gt.reshape(gt.shape[0], -1, 6) gt = matrix_to_axis_angle(rotation_6d_to_matrix(gt)).reshape(gt.shape[0], -1) gt = torch.cat([gt, gt_exp], -1) if face: gt = torch.cat([gt[:, :3], body_static.repeat(gt.shape[0], 1), gt[:, -100:]], dim=-1) result_list = [gt] # cur_wav_file = '.\\training_data\\french-V4.wav' # pred_face = g_face.infer_on_audio(cur_wav_file, # initial_pose=poses_, # norm_stats=None, # w_pre=False, # # id=id, # frame=None, # am=am, # am_sr=am_sr # ) # # pred_face = torch.tensor(pred_face).squeeze().to('cuda') pred_face = torch.zeros([gt.shape[0], 103], device='cuda') pred_jaw = pred_face[:, :3] pred_face = pred_face[:, 3:] # id = torch.tensor([0], device='cuda') for i in range(num_sample): pred_res = g_body.infer_on_audio(cur_wav_file, initial_pose=poses_, norm_stats=norm_stats, txgfile=None, id=id, var=var, fps=30, continuity=True, smooth=False ) pred = torch.tensor(pred_res).squeeze().to('cuda') if pred.shape[0] < pred_face.shape[0]: repeat_frame = pred[-1].unsqueeze(dim=0).repeat(pred_face.shape[0] - pred.shape[0], 1) pred = torch.cat([pred, repeat_frame], dim=0) else: pred = pred[:pred_face.shape[0], :] if config.Data.pose.convert_to_6d: pred = pred.reshape(pred.shape[0], -1, 6) pred = matrix_to_axis_angle(rotation_6d_to_matrix(pred)) pred = pred.reshape(pred.shape[0], -1) pred = torch.cat([pred_jaw, pred, pred_face], dim=-1) # pred[:, 9:12] = global_orient pred = part2full(pred, stand) if face: pred = torch.cat([pred[:, :3], body_static.repeat(pred.shape[0], 1), pred[:, -100:]], dim=-1) # result_list[0] = poses2pred(result_list[0], stand) # if gt_0 is None: # gt_0 = gt # pred = pred2poses(pred, gt_0) # result_list[0] = poses2poses(result_list[0], gt_0) result_list.append(pred) vertices_list, _ = get_vertices(smplx_model, betas, result_list, config.Data.pose.expression) result_list = [res.to('cpu') for res in result_list] dict = np.concatenate(result_list[1:], axis=0) file_name = 'visualise/video/' + config.Log.name + '/' + \ cur_wav_file.split('\\')[-1].split('.')[-2].split('/')[-1] np.save(file_name, dict) rendertool._render_continuity(cur_wav_file, vertices_list[1], frame=60) def main(): parser = parse_args() args = parser.parse_args() device = torch.device(args.gpu) torch.cuda.set_device(device) config = load_JsonConfig(args.config_file) smplx = True os.environ['smplx_npz_path'] = config.smplx_npz_path os.environ['extra_joint_path'] = config.extra_joint_path os.environ['j14_regressor_path'] = config.j14_regressor_path print('init model...') body_model_name = 's2g_body_pixel' body_model_path = './experiments/2022-12-31-smplx_S2G-body-pixel-conti-wide/ckpt-99.pth' # './experiments/2022-10-09-smplx_S2G-body-pixel-aud-3p/ckpt-99.pth' generator = init_model(body_model_name, body_model_path, args, config) # face_model_name = 's2g_face' # face_model_path = './experiments/2022-10-15-smplx_S2G-face-sgd-3p-wv2/ckpt-99.pth' # './experiments/2022-09-28-smplx_S2G-face-faceformer-3d/ckpt-99.pth' # generator_face = init_model(face_model_name, face_model_path, args, config) generator_face = None print('init dataloader...') infer_set, infer_loader, norm_stats = init_dataloader(config.Data.data_root, args.speakers, args, config) print('init smlpx model...') dtype = torch.float64 model_params = dict(model_path='E:/PycharmProjects/Motion-Projects/models', model_type='smplx', create_global_orient=True, create_body_pose=True, create_betas=True, num_betas=300, create_left_hand_pose=True, create_right_hand_pose=True, use_pca=False, flat_hand_mean=False, create_expression=True, num_expression_coeffs=100, num_pca_comps=12, create_jaw_pose=True, create_leye_pose=True, create_reye_pose=True, create_transl=False, # gender='ne', dtype=dtype, ) smplx_model = smpl.create(**model_params).to('cuda') print('init rendertool...') rendertool = RenderTool('visualise/video/' + config.Log.name) infer(config.Data.data_root, generator, generator_face, None, args.exp_name, infer_loader, infer_set, device, norm_stats, smplx, smplx_model, rendertool, args, config, (None, None)) if __name__ == '__main__': main()