export type ProjectionMode = 'cartesian' | 'spherical' export type CacheMode = "use" | "renew" | "ignore" export interface RenderRequest { prompt: string // whether to use video segmentation // disabled (default) // firstframe: we only analyze the first frame // allframes: we analyze all the frames segmentation: 'disabled' | 'firstframe' | 'allframes' // segmentation will only be executed if we have a non-empty list of actionnables // actionnables are names of things like "chest", "key", "tree", "chair" etc actionnables: string[] nbFrames: number nbFPS: number nbSteps: number // min: 1, max: 50 seed: number width: number // fixed at 1024 for now height: number // fixed at 512 for now // upscaling factor // 0: no upscaling // 1: no upscaling // 2: 2x larger // 3: 3x larger // 4x: 4x larger, up to 4096x4096 (warning: a PNG of this size can be 50 Mb!) upscalingFactor: number projection: ProjectionMode /** * Use turbo mode * * At the time of writing this will use SSD-1B + LCM * https://huggingface.co/spaces/jbilcke-hf/fast-image-server */ turbo: boolean cache: CacheMode wait: boolean // wait until the job is completed analyze: boolean // analyze the image to generate a caption (optional) identityImage: string // reference image for the main entity } export interface ImageSegment { id: number box: number[] color: number[] label: string score: number } export type RenderedSceneStatus = | "pregenerated" | "pending" | "completed" | "error" export interface RenderedScene { renderId: string status: RenderedSceneStatus assetUrl: string alt: string error: string maskUrl: string segments: ImageSegment[] } export interface ImageAnalysisRequest { image: string // in base64 prompt: string } export interface ImageAnalysisResponse { result: string error?: string } export type GeneratedPanel = { panel: number instructions: string speech: string caption: string } export type GeneratedPanels = GeneratedPanel[] // LLMVendor = what the user configure in the UI (eg. a dropdown item called default server) // LLMEngine = the actual engine to use (eg. hugging face) export type LLMEngine = | "INFERENCE_API" | "INFERENCE_ENDPOINT" | "OPENAI" | "REPLICATE" | "GROQ" | "ANTHROPIC" export type RenderingEngine = | "VIDEOCHAIN" | "OPENAI" | "REPLICATE" | "INFERENCE_API" | "INFERENCE_ENDPOINT" export type RenderingModelVendor = | "SERVER" | "OPENAI" | "REPLICATE" | "HUGGINGFACE" // LLMVendor = what the user configure in the UI (eg. a dropdown item called default server) // LLMEngine = the actual engine to use (eg. hugging face) export type LLMVendor = | "SERVER" | "OPENAI" | "GROQ" | "ANTHROPIC" export type LLMVendorConfig = { vendor: LLMVendor apiKey: string modelId: string } export type LLMPredictionFunctionParams = { systemPrompt: string userPrompt: string nbMaxNewTokens: number llmVendorConfig: LLMVendorConfig } export type PostVisibility = | "featured" // featured by admins | "trending" // top trending / received more than 10 upvotes | "normal" // default visibility export type Post = { postId: string appId: string prompt: string previewUrl: string assetUrl: string createdAt: string visibility: PostVisibility upvotes: number downvotes: number } export type CreatePostResponse = { success?: boolean error?: string post: Post } export type GetAppPostsResponse = { success?: boolean error?: string posts: Post[] } export type GetAppPostResponse = { success?: boolean error?: string post: Post } export type LayoutProps = { page: number nbPanels: number } // TODO: rename the *Model fields to better indicate if this is a LLM or RENDER mdoel export type Settings = { renderingModelVendor: RenderingModelVendor renderingUseTurbo: boolean llmVendor: LLMVendor huggingFaceOAuth: string huggingfaceApiKey: string huggingfaceInferenceApiModel: string huggingfaceInferenceApiModelTrigger: string huggingfaceInferenceApiFileType: string replicateApiKey: string replicateApiModel: string replicateApiModelVersion: string replicateApiModelTrigger: string openaiApiKey: string openaiApiModel: string openaiApiLanguageModel: string groqApiKey: string groqApiLanguageModel: string anthropicApiKey: string anthropicApiLanguageModel: string hasGeneratedAtLeastOnce: boolean userDefinedMaxNumberOfPages: number } export type DynamicConfig = { maxNbPages: number nbPanelsPerPage: number nbTotalPanelsToGenerate: number oauthClientId: string oauthRedirectUrl: string oauthScopes: string enableHuggingFaceOAuth: boolean enableHuggingFaceOAuthWall: boolean }