# Copyright (c) OpenMMLab. All rights reserved. import os import numpy as np import warnings try: import mmcv except ImportError: warnings.warn( "The module 'mmcv' is not installed. The package will have limited functionality. Please install it using the command: mim install 'mmcv>=2.0.1'" ) try: from mmpose.apis import inference_topdown from mmpose.apis import init_model as init_pose_estimator from mmpose.evaluation.functional import nms from mmpose.utils import adapt_mmdet_pipeline from mmpose.structures import merge_data_samples except ImportError: warnings.warn( "The module 'mmpose' is not installed. The package will have limited functionality. Please install it using the command: mim install 'mmpose>=1.1.0'" ) try: from mmdet.apis import inference_detector, init_detector except ImportError: warnings.warn( "The module 'mmdet' is not installed. The package will have limited functionality. Please install it using the command: mim install 'mmdet>=3.1.0'" ) class Wholebody: def __init__(self, det_config=None, det_ckpt=None, pose_config=None, pose_ckpt=None, device="cpu"): if det_config is None: det_config = os.path.join(os.path.dirname(__file__), "yolox_config/yolox_l_8xb8-300e_coco.py") if pose_config is None: pose_config = os.path.join(os.path.dirname(__file__), "dwpose_config/dwpose-l_384x288.py") if det_ckpt is None: det_ckpt = 'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_l_8x8_300e_coco/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth' if pose_ckpt is None: pose_ckpt = "https://huggingface.co/wanghaofan/dw-ll_ucoco_384/resolve/main/dw-ll_ucoco_384.pth" # build detector self.detector = init_detector(det_config, det_ckpt, device=device) self.detector.cfg = adapt_mmdet_pipeline(self.detector.cfg) # build pose estimator self.pose_estimator = init_pose_estimator( pose_config, pose_ckpt, device=device) def to(self, device): self.detector.to(device) self.pose_estimator.to(device) return self def __call__(self, oriImg): # predict bbox det_result = inference_detector(self.detector, oriImg) pred_instance = det_result.pred_instances.cpu().numpy() bboxes = np.concatenate( (pred_instance.bboxes, pred_instance.scores[:, None]), axis=1) bboxes = bboxes[np.logical_and(pred_instance.labels == 0, pred_instance.scores > 0.5)] # set NMS threshold bboxes = bboxes[nms(bboxes, 0.7), :4] # predict keypoints if len(bboxes) == 0: pose_results = inference_topdown(self.pose_estimator, oriImg) else: pose_results = inference_topdown(self.pose_estimator, oriImg, bboxes) preds = merge_data_samples(pose_results) preds = preds.pred_instances # preds = pose_results[0].pred_instances keypoints = preds.get('transformed_keypoints', preds.keypoints) if 'keypoint_scores' in preds: scores = preds.keypoint_scores else: scores = np.ones(keypoints.shape[:-1]) if 'keypoints_visible' in preds: visible = preds.keypoints_visible else: visible = np.ones(keypoints.shape[:-1]) keypoints_info = np.concatenate( (keypoints, scores[..., None], visible[..., None]), axis=-1) # compute neck joint neck = np.mean(keypoints_info[:, [5, 6]], axis=1) # neck score when visualizing pred neck[:, 2:4] = np.logical_and( keypoints_info[:, 5, 2:4] > 0.3, keypoints_info[:, 6, 2:4] > 0.3).astype(int) new_keypoints_info = np.insert( keypoints_info, 17, neck, axis=1) mmpose_idx = [ 17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3 ] openpose_idx = [ 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17 ] new_keypoints_info[:, openpose_idx] = \ new_keypoints_info[:, mmpose_idx] keypoints_info = new_keypoints_info keypoints, scores, visible = keypoints_info[ ..., :2], keypoints_info[..., 2], keypoints_info[..., 3] return keypoints, scores