from transformers import VisionEncoderDecoderModel from transformers import TrOCRProcessor, AutoTokenizer, ViTImageProcessor import gradio as gr from PIL import Image def OCR(image): model = VisionEncoderDecoderModel.from_pretrained("kavg/TrOCR-SIN-DeiT-Handwritten") tokenizer = AutoTokenizer.from_pretrained('NLPC-UOM/SinBERT-large') feature_extractor = ViTImageProcessor.from_pretrained("google/vit-base-patch16-224") processor = TrOCRProcessor(image_processor=feature_extractor, tokenizer=tokenizer) pixel_values = processor(image, return_tensors="pt").pixel_values generated_ids = model.generate(pixel_values) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] return generated_text demo = gr.Interface(fn=OCR, inputs=gr.Image(show_label=False, type="pil"),outputs=gr.Textbox()) demo.launch(debug=True)