import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer # Load Llama 3.2-3B-Instruct model locally model_name = "meta-llama/Llama-3.2-3B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, device_map="auto" ) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Format the conversation history messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) prompt = "\n".join([msg["content"] for msg in messages]) # Tokenize and generate response inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate( **inputs, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response # Gradio ChatInterface with controls for temperature, tokens, etc. demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()