{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Data Deployment Draft" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# import libraries\n", "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | Age | \n", "Attrition | \n", "BusinessTravel | \n", "DailyRate | \n", "Department | \n", "DistanceFromHome | \n", "Education | \n", "EducationField | \n", "EnvironmentSatisfaction | \n", "Gender | \n", "... | \n", "PerformanceRating | \n", "RelationshipSatisfaction | \n", "StockOptionLevel | \n", "TotalWorkingYears | \n", "TrainingTimesLastYear | \n", "WorkLifeBalance | \n", "YearsAtCompany | \n", "YearsInCurrentRole | \n", "YearsSinceLastPromotion | \n", "YearsWithCurrManager | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "39 | \n", "0 | \n", "3 | \n", "0.318958 | \n", "2 | \n", "3 | \n", "1 | \n", "5 | \n", "2 | \n", "1 | \n", "... | \n", "3 | \n", "2 | \n", "1 | \n", "7 | \n", "3 | \n", "2 | \n", "16 | \n", "11 | \n", "0 | \n", "9 | \n", "
1 | \n", "29 | \n", "0 | \n", "2 | \n", "0.845930 | \n", "1 | \n", "21 | \n", "3 | \n", "3 | \n", "2 | \n", "1 | \n", "... | \n", "3 | \n", "3 | \n", "1 | \n", "8 | \n", "3 | \n", "2 | \n", "2 | \n", "5 | \n", "3 | \n", "5 | \n", "
2 | \n", "40 | \n", "0 | \n", "2 | \n", "0.153782 | \n", "2 | \n", "1 | \n", "1 | \n", "5 | \n", "2 | \n", "1 | \n", "... | \n", "3 | \n", "1 | \n", "1 | \n", "24 | \n", "2 | \n", "2 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
3 | \n", "24 | \n", "0 | \n", "2 | \n", "0.785534 | \n", "1 | \n", "6 | \n", "3 | \n", "1 | \n", "4 | \n", "2 | \n", "... | \n", "3 | \n", "3 | \n", "1 | \n", "4 | \n", "0 | \n", "2 | \n", "7 | \n", "8 | \n", "0 | \n", "6 | \n", "
4 | \n", "44 | \n", "0 | \n", "2 | \n", "1.000000 | \n", "1 | \n", "5 | \n", "5 | \n", "5 | \n", "1 | \n", "1 | \n", "... | \n", "3 | \n", "4 | \n", "1 | \n", "0 | \n", "2 | \n", "3 | \n", "0 | \n", "5 | \n", "1 | \n", "2 | \n", "
5 rows × 30 columns
\n", "XGBClassifier(base_score=None, booster=None, callbacks=None,\n", " colsample_bylevel=None, colsample_bynode=None,\n", " colsample_bytree=None, early_stopping_rounds=None,\n", " enable_categorical=False, eval_metric=None, feature_types=None,\n", " gamma=None, gpu_id=None, grow_policy=None, importance_type=None,\n", " interaction_constraints=None, learning_rate=None, max_bin=None,\n", " max_cat_threshold=None, max_cat_to_onehot=None,\n", " max_delta_step=None, max_depth=4, max_leaves=None,\n", " min_child_weight=None, missing=nan, monotone_constraints=None,\n", " n_estimators=250, n_jobs=None, num_parallel_tree=None,\n", " predictor=None, random_state=None, ...)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
XGBClassifier(base_score=None, booster=None, callbacks=None,\n", " colsample_bylevel=None, colsample_bynode=None,\n", " colsample_bytree=None, early_stopping_rounds=None,\n", " enable_categorical=False, eval_metric=None, feature_types=None,\n", " gamma=None, gpu_id=None, grow_policy=None, importance_type=None,\n", " interaction_constraints=None, learning_rate=None, max_bin=None,\n", " max_cat_threshold=None, max_cat_to_onehot=None,\n", " max_delta_step=None, max_depth=4, max_leaves=None,\n", " min_child_weight=None, missing=nan, monotone_constraints=None,\n", " n_estimators=250, n_jobs=None, num_parallel_tree=None,\n", " predictor=None, random_state=None, ...)