import streamlit as st from backend.bot import * from backend.model import * import pandas as pd import time import google.generativeai as genai # Page title st.set_page_config(page_title='Batch Processing', layout='wide') st.title("Attrition Prediction Engine") st.write("Welcome to the Attrition Prediction Engine! This tool is designed to help you batch process employee data and predict attrition.") with st.sidebar: with st.expander("🧪 Experimental Features", expanded=False): st.caption("API token can be obtained at https://aistudio.google.com/.") gemini_api = st.text_input("Gemini Token", "", type='password') try: genai.configure(api_key=gemini_api) ai_model = genai.GenerativeModel("gemini-1.5-flash") test = ai_model.generate_content("Explain how AI works") st.success("API key is valid. Experimental feature access granted.") except Exception as e: st.error("API key is invalid. You don't have access to experimental features.") with st.expander("⚠️ Disclaimer", expanded=False): st.write("This web app is intended for prediction purposes only. The results are based on the input data provided and \ the performance of the machine learning model. The accuracy of the predictions may vary depending on data quality \ and model reliability.") st.caption("MIT License © 2025 Khor Kean Teng, Ng Jing Wen, Lim Sze Chie, Tan Yee Thong, Yee See Marn") # Display assistant response in chat message container with st.chat_message("assistant", avatar="https://cdn4.iconfinder.com/data/icons/heroes-villains-vol-2-colored/100/Terminator-512.png"): # response = st.write_stream(response_generator()) response = st.write("Hello admin! I am Az-147. How can I assist you today?") st.caption("If you use predefined data, the file upload step will be hidden.") toggle = st.toggle('Use Predefined Data', True) data= get_data("data/sample_data.csv") if toggle == False: uploaded_file = st.file_uploader("Upload a CSV file", type=["csv"]) if uploaded_file is not None: data = pd.read_csv(uploaded_file) submit = st.button("Execute", type='primary') model = load_model("model/model.pkl") def count_attrition(predictions): return sum(predictions) if submit: with st.status("Data Preview", expanded=True): time.sleep(.5) st.write(f"You've uploaded a data file of {data.shape[0]} rows and {data.shape[1]} columns. Here's a preview of the data:") st.write(data.head()) with st.status("Predicting Attrition...", expanded=True): time.sleep(2) prediction = model.predict(data) data['Attrition'] = prediction attrition_count = count_attrition(prediction) output = f"Prediction completed! There are {attrition_count} cases of attrition. Here's a preview of the data with the predicted attrition status:" st.write(output) st.write(data.head()) with st.status("AI Opinion", expanded=True): try: response = ai_model.generate_content(f"Give some opinions in about 100 word based on the prediction results where there are {attrition_count} cases of attrition.") st.write(response.text) except Exception as e: st.write("You don't have access to this feature. Please authenticate to use this feature.")