import json import os import gradio as gr import huggingface_hub from huggingface_hub import snapshot_download from omegaconf import OmegaConf from vosk import KaldiRecognizer, Model def load_vosk(model_id: str): model_dir = snapshot_download(model_id) return Model(model_path=model_dir) OmegaConf.register_new_resolver("load_vosk", load_vosk) models_config = OmegaConf.to_object(OmegaConf.load("configs/models.yaml")) def automatic_speech_recognition(model_id: str, audio_data: str): model = models_config[model_id] sample_rate, audio_array = audio_data if audio_array.ndim == 2: audio_array = audio_array[:, 0] audio_bytes = audio_array.tobytes() rec = KaldiRecognizer(model, sample_rate) rec.SetWords(True) results = [] for start in range(0, len(audio_bytes), 4000): end = min(start + 4000, len(audio_bytes)) data = audio_bytes[start:end] if rec.AcceptWaveform(data): raw_result = json.loads(rec.Result()) results.append(raw_result) final_result = json.loads(rec.FinalResult()) results.append(final_result) filtered_lines = [] for result in results: # result["text"] = result["text"].replace(" ", "") if len(result["text"]) > 0: filtered_lines.append(result["text"]) return " ".join(filtered_lines) def when_model_selected(model_id: str): model_config = models_config[model_id] if "dialect_mapping" not in model_config: return gr.update(visible=False) dialect_drop_down_choices = [ (k, v) for k, v in model_config["dialect_mapping"].items() ] return gr.update( choices=dialect_drop_down_choices, value=dialect_drop_down_choices[0][1], visible=True, ) demo = gr.Blocks( title="康統 Kaldi 語音辨識系統", css="@import url(https://tauhu.tw/tauhu-oo.css);", theme=gr.themes.Default( font=( "tauhu-oo", gr.themes.GoogleFont("Source Sans Pro"), "ui-sans-serif", "system-ui", "sans-serif", ) ), ) with demo: default_model_id = list(models_config.keys())[0] model_drop_down = gr.Dropdown( models_config.keys(), value=default_model_id, label="模型", ) gr.Markdown( """ # 康統 Kaldi 語音辨識系統 """ ) gr.Interface( automatic_speech_recognition, inputs=[ model_drop_down, gr.Audio( label="上傳或錄音", type="numpy", format="wav", waveform_options=gr.WaveformOptions( sample_rate=16000, ), show_download_button=True, ), ], outputs=[ gr.Text(interactive=False, label="文字"), ], allow_flagging="auto", ) demo.launch()