def create_digit_samples(num_images): random_latent_vectors = tf.random.normal(shape=(int(num_images), 128)) predictions = model.predict(random_latent_vectors) num = ceil(sqrt(num_images)) digit_images = np.zeros((28*num, 28*num), dtype=float) n = 0 for i in range(num): for j in range(num): if n == num_images: break digit_images[i* 28 : (i+1)*28, j*28 : (j+1)*28] = predictions[n, :, :, 0] n += 1 return digit_images title = "WGAN-GP" description = "Image Generation Using WGAN" article = """
Keras Example given by A_K_Nain
Space by Gitesh Chawda