from huggingface_hub import from_pretrained_keras
import matplotlib.pyplot as plt
from math import sqrt, ceil
import tensorflow as tf
import gradio as gr
import numpy as np
model1 = tf.keras.models.load_model("mnist.h5", compile=False)
model2 = from_pretrained_keras("keras-io/WGAN-GP")
title = "WGAN-GP"
description = "Image Generation(Fashion Mnist and Handwritten Digits) Using WGAN"
article = """
Keras Example given by A_K_Nain
Space by Gitesh Chawda
"""
def Predict(model, num_images):
random_latent_vectors = tf.random.normal(shape=(int(num_images), 128))
predictions = model(random_latent_vectors)
num = ceil(sqrt(num_images))
images = np.zeros((28*num, 28*num), dtype=float)
n = 0
for i in range(num):
for j in range(num):
if n == num_images:
break
images[i* 28 : (i+1)*28, j*28 : (j+1)*28] = predictions[n, :, :, 0]
n += 1
return images
def inference(num_images, Choose: str):
if Choose == 'Fashion_mnist':
result = Predict(model2, num_images)
else:
result = Predict(model1, num_images)
return result
inputs = [gr.inputs.Number(label="number of images"), gr.inputs.Radio(['Fashion_mnist', 'Handwritten_digits_mnist'])]
outputs = gr.outputs.Image(label="Output Image")
examples = [[4,"Handwritten_digits_mnist"], [6,"Handwritten_digits_mnist"],[10,"Fashion_mnist"]]
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=examples).launch()