from huggingface_hub import from_pretrained_keras import matplotlib.pyplot as plt from math import sqrt, ceil import tensorflow as tf import gradio as gr import numpy as np model = from_pretrained_keras("IMvision12/WGAN-GP") title = "WGAN-GP" description = "Image Generation Using WGAN" article = """

Keras Example given by A_K_Nain
Space by Gitesh Chawda

""" def Predict(num_images): random_latent_vectors = tf.random.normal(shape=(int(num_images), 128)) predictions = model.predict(random_latent_vectors) num = ceil(sqrt(num_images)) images = np.zeros((28*num, 28*num), dtype=float) n = 0 for i in range(num): for j in range(num): if n == num_images: break images[i* 28 : (i+1)*28, j*28 : (j+1)*28] = predictions[n, :, :, 0] n += 1 return images inputs = gr.inputs.Number(label="number of images") outputs = gr.outputs.Image(label="Predictions") examples = [ [10], [7], [1], [3], [5] ] gr.Interface(Predict, inputs, outputs, article=article, title=title, description=description, examples=examples, analytics_enabled=False).launch(enable_queue=True)