import gradio as gr from gradio import mix import torch from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from huggingface_hub import from_pretrained_keras title = "Miniature" description = "Gradio Demo for a miniature with GPT. To use it, simply add your text, or click one of the examples to load them. Read more at the links below." tokenizer = AutoTokenizer.from_pretrained("aditi2222/automatic_title_generation") model = from_pretrained_keras("keras-io/text-generation-miniature-gpt") def tokenize_data(text): # Tokenize the review body input_ = str(text) + ' ' max_len = 120 # tokenize inputs tokenized_inputs = tokenizer(input_, padding='max_length', truncation=True, max_length=max_len, return_attention_mask=True, return_tensors='pt') inputs={"input_ids": tokenized_inputs['input_ids'], "attention_mask": tokenized_inputs['attention_mask']} return inputs def generate_answers(text): inputs = tokenize_data(text) results= model.generate(input_ids= inputs['input_ids'], attention_mask=inputs['attention_mask'], do_sample=True, max_length=120, top_k=120, top_p=0.98, early_stopping=True, num_return_sequences=1) answer = tokenizer.decode(results[0], skip_special_tokens=True) return answer iface = gr.Interface(fn=generate_answers, inputs=['text'], outputs=["text"]) iface.launch(inline=False, share=True)