import gradio as gr from gradio import mix import numpy as np import torch from keras.preprocessing.sequence import pad_sequences import pickle from huggingface_hub import from_pretrained_keras model = from_pretrained_keras("keras-io/text-generation-miniature-gpt") with open('tokenizer.pickle', 'rb') as handle: tokenizer = pickle.load(handle) def tokenize_data(text): # Tokenize the review body input_ = str(text) + ' ' max_len = 80 # tokenize inputs tokenized_inputs = tokenizer(input_, padding='max_length', truncation=True, max_length=max_len, return_attention_mask=True, return_tensors='pt') inputs={"input_ids": tokenized_inputs['input_ids'], "attention_mask": tokenized_inputs['attention_mask']} return inputs def generate_answers(text): sequence_test = tokenizer.texts_to_sequences([text]) padded_test = pad_sequences(sequence_test, maxlen= 80, padding='post') predictions,_ = model.predict(padded_test) results = np.argmax(predictions, axis=1)[0] answer = tokenizer.sequences_to_texts([results] ) answertoString = ' '.join([str(elem) for elem in answer]) return answertoString examples = [["The movie was nice, "], ["It was showing nothing special to "]] title = "Text Generation with Miniature GPT" description = "Gradio Demo for a miniature with GPT. To use it, simply add your text, or click one of the examples to load them. Read more at the links below." iface = gr.Interface(fn=generate_answers, title = title, description=description, inputs=['text'], outputs=["text"], examples=examples) iface.launch(inline=False, share=True)