#%% from matplotlib.pyplot import title import tensorflow as tf from tensorflow import keras from huggingface_hub import from_pretrained_keras import pandas as pd import matplotlib.pyplot as plt import streamlit as st from zipfile import ZipFile import os import warnings warnings.filterwarnings("ignore") uri = "https://storage.googleapis.com/tensorflow/tf-keras-datasets/jena_climate_2009_2016.csv.zip" zip_path = keras.utils.get_file(origin=uri, fname="jena_climate_2009_2016.csv.zip") zip_file = ZipFile(zip_path) zip_file.extractall() csv_path = "jena_climate_2009_2016.csv" df = pd.read_csv(csv_path) #%% title = "Timeseries forecasting for weather prediction" # %% model titles = [ "Pressure", "Temperature", "Temperature in Kelvin", "Temperature (dew point)", "Relative Humidity", "Saturation vapor pressure", "Vapor pressure", "Vapor pressure deficit", "Specific humidity", "Water vapor concentration", "Airtight", "Wind speed", "Maximum wind speed", "Wind direction in degrees", ] feature_keys = [ "p (mbar)", "T (degC)", "Tpot (K)", "Tdew (degC)", "rh (%)", "VPmax (mbar)", "VPact (mbar)", "VPdef (mbar)", "sh (g/kg)", "H2OC (mmol/mol)", "rho (g/m**3)", "wv (m/s)", "max. wv (m/s)", "wd (deg)", ] date_time_key = "Date Time" split_fraction = 0.715 train_split = int(split_fraction * int(df.shape[0])) step = 6 past = 720 future = 72 learning_rate = 0.001 batch_size = 256 epochs = 10 def normalize(data, train_split): data_mean = data[:train_split].mean(axis=0) data_std = data[:train_split].std(axis=0) return (data - data_mean) / data_std print( "The selected parameters are:", ", ".join([titles[i] for i in [0, 1, 5, 7, 8, 10, 11]]), ) selected_features = [feature_keys[i] for i in [0, 1, 5, 7, 8, 10, 11]] features = df[selected_features] features.index = df[date_time_key] features.head() features = normalize(features.values, train_split) features = pd.DataFrame(features) features.head() train_data = features.loc[0 : train_split - 1] val_data = features.loc[train_split:] split_fraction = 0.715 train_split = int(split_fraction * int(df.shape[0])) step = 6 past = 720 future = 72 learning_rate = 0.001 batch_size = 256 epochs = 10 def normalize(data, train_split): data_mean = data[:train_split].mean(axis=0) data_std = data[:train_split].std(axis=0) return (data - data_mean) / data_std print( "The selected parameters are:", ", ".join([titles[i] for i in [0, 1, 5, 7, 8, 10, 11]]), ) selected_features = [feature_keys[i] for i in [0, 1, 5, 7, 8, 10, 11]] features = df[selected_features] features.index = df[date_time_key] features.head() features = normalize(features.values, train_split) features = pd.DataFrame(features) features.head() train_data = features.loc[0 : train_split - 1] val_data = features.loc[train_split:] start = past + future end = start + train_split x_train = train_data[[i for i in range(7)]].values y_train = features.iloc[start:end][[1]] sequence_length = int(past / step) x_end = len(val_data) - past - future label_start = train_split + past + future x_val = val_data.iloc[:x_end][[i for i in range(7)]].values y_val = features.iloc[label_start:][[1]] dataset_val = keras.preprocessing.timeseries_dataset_from_array( x_val, y_val, sequence_length=sequence_length, sampling_rate=step, batch_size=batch_size, ) #%% model = from_pretrained_keras("yusyel/test") #%% please don't code shaming me :/ st.set_option('deprecation.showPyplotGlobalUse', False) def plot(): n = st.sidebar.slider("Step", min_value = 1, max_value=5, value = 1) def show_plot(plot_data, delta, title): labels = ["History", "True Future", "Model Prediction"] marker = [".-", "rx", "go"] time_steps = list(range(-(plot_data[0].shape[0]), 0)) if delta: future = delta else: future = 0 plt.title(title) for i, val in enumerate(plot_data): if i: plt.plot(future, plot_data[i], marker[i], markersize=10, label=labels[i]) else: plt.plot(time_steps, plot_data[i].flatten(), marker[i], label=labels[i]) plt.legend(loc='lower center', bbox_to_anchor=(0.5, 1.05), ncol=3, fancybox=True, shadow=True) plt.xlim([time_steps[0], (future + 5) * 2]) plt.xlabel("Time-Step") plt.show() return for x, y in dataset_val.take(n): show_plot( [x[0][:, 1].numpy(), y[0].numpy(), model.predict(x)[0]], 12, "Single Step Prediction", ) fig = plot() st.pyplot(fig) # %%