import ast import os import pickle import random from datetime import datetime, timedelta import gradio as gr import pandas as pd from langchain_google_genai import ChatGoogleGenerativeAI from langchain_core.messages import HumanMessage, SystemMessage from pytrends.request import TrendReq from mlxtend.preprocessing import TransactionEncoder def convert_keywords_to_list(keywords_str): try: return ast.literal_eval(keywords_str) except (SyntaxError, ValueError): return [] def convert_scores_to_list(scores_float): try: return ast.literal_eval(scores_float) except (SyntaxError, ValueError): return [] video_df = pd.read_csv('video_df_complete.csv') video_df['keywords'] = video_df['keywords'].apply(convert_keywords_to_list) video_df['trend_scores'] = video_df['trend_scores'].apply(convert_scores_to_list) video_df['total_score'] = video_df['trend_scores'].apply(lambda x: sum(x) / len(x) if len(x) > 0 else 0) transactions = [] for index, row in video_df.iterrows(): transactions.append(row['keywords']) te = TransactionEncoder() te_ary = te.fit(transactions).transform(transactions) df = pd.DataFrame(te_ary, columns=te.columns_) merged_df = pd.concat([df, video_df['total_score'], video_df['engagement_rate']], axis=1) rules = pd.read_csv('association_rules.csv') rules['antecedents'] = rules['antecedents'].apply(lambda x: list(eval(x))) rules['consequents'] = rules['consequents'].apply(lambda x: list(eval(x))) model_filename = os.path.join('regression_model_final.pkl') with open(model_filename, 'rb') as file: model = pickle.load(file) llm = ChatGoogleGenerativeAI(model="gemini-1.5-pro", convert_system_message_to_human=True) def custom_predict(keywords, total_score): """ Custom prediction function using the trained linear regression model. Args: keywords: A list of keywords. total_score: The total trend score. Returns: The predicted engagement rate. """ new_data = pd.DataFrame([{col: 0 for col in merged_df.columns}]) for keyword in keywords: if keyword in new_data.columns: new_data.at[0, keyword] = 1 new_data.at[0, 'total_score'] = total_score new_data = new_data.drop('engagement_rate', axis=1) prediction = model.predict(new_data) return prediction[0][0] def generate_keyword_scores(keywords): scaled_rate = min(100, 4.5 * 10) return [ round(random.uniform(scaled_rate * 0.7, min(100, scaled_rate * 1.2)), 2) for _ in keywords ] def get_google_trends_score(keywords, end_date, days_back=7): """ Mengambil skor tren Google untuk kata kunci tertentu selama periode waktu tertentu. Parameters: keywords (list): Daftar kata kunci yang ingin dianalisis. end_date (datetime): Tanggal akhir untuk data tren. days_back (int): Jumlah hari ke belakang dari end_date untuk menentukan rentang waktu (default: 7 hari). Returns: pd.DataFrame: DataFrame berisi data tren per kata kunci selama periode waktu yang ditentukan. """ try: if not keywords: raise ValueError("Daftar kata kunci tidak boleh kosong.") pytrends = TrendReq() start_date = end_date - timedelta(days=days_back) timeframe = f"{start_date.strftime('%Y-%m-%d')} {end_date.strftime('%Y-%m-%d')}" pytrends.build_payload(keywords, timeframe=timeframe, geo='ID', gprop='youtube') trends_df = pytrends.interest_over_time() if 'isPartial' in trends_df.columns: trends_df = trends_df.drop(columns=['isPartial']) return trends_df except Exception as e: return pd.DataFrame(generate_keyword_scores(keywords)) def generate_title(keyword, category): if category != 'Gaming': return "Category belum supported." recommendation = recommend_keyword(keyword) if not recommendation: return "No recommendations found." else: result = llm( [ SystemMessage( content=f"Kamu adalah seorang penulis judul video youtube" f"Kamu akan diberikan beberapa buah keyword yang wajib digunakan untuk judul" f"Buat judul yang semenarik mungkin untuk memberikan viewer rasa suka" f"Cukup keluarkan satu judul saja dalam satu kalimat" f"Jangan gunnakan formatting seperti '\n' atau hal lainnya. Gunakan saja raw string" f"Boleh pake emoji" ), HumanMessage( content=f"keyword yang digunakan adalah sebagai berikut: {recommendation}" f"Total jumlah keyword adalah: {len(recommendation)}" f"Video memiliki kategori: {category}" ) ] ) return result.content def recommend_keyword(keyword): keyword_rules = rules[ rules['antecedents'].astype(str).str.contains(keyword) | rules['consequents'].astype(str).str.contains(keyword)] top_5_rules = keyword_rules.sort_values(by='lift', ascending=False).head(5) recommendation = [] engages = [] for idx, row in top_5_rules.iterrows(): antecedents = list(row['antecedents'])[0] consequents = list(row['consequents']) recommendation.append([keyword] + consequents) if not recommendation: return [] for rec in recommendation: trends_df = get_google_trends_score(rec, datetime.now()) batch_scores = [ round(trends_df[keyword].mean(), 2) if keyword in trends_df.columns else 0 for keyword in keywords ] batch_scores = sum(batch_scores) / len(batch_scores) engagement_rate = custom_predict(rec, batch_scores) engages.append(engagement_rate) return recommendation[engages.index(max(engages))] distinct_categories = video_df['catergory'].unique() iface = gr.Interface( fn=generate_title, inputs=[ gr.Textbox(label="Enter a keyword"), gr.Dropdown(label="Select a category", choices=list(distinct_categories)) ], outputs=gr.Textbox(label="Recommendations"), title="Title Recommendation", description="Do'akan saya langgeng sm Ei" ) iface.launch()