import streamlit as st from sklearn import neighbors, datasets with st.form(key='my_form'): sLen = st.slider('sepal length (cm) ', 0.0, 10.0) sWid = st.slider('sepal Width (cm) ', 0.0, 10.0) pLen = st.slider('petal length (cm) ', 0.0, 10.0) pWid = st.slider('petal Width (cm) ', 0.0, 10.0) st.form_submit_button('predict') iris = datasets. load_iris() X, y = iris.data, iris.target knn = neighbors.KNeighborsClassifier(n_neighbors=3) knn.fit(X, y) predict = knn.predict([[sLen,sWid,pLen,pWid]]) st.text(iris.target_names[predict])