import copy import random from PIL import Image import numpy as np def create_relative(RT_list, K_1=4.7, dataset="syn"): if dataset == "realestate": scale_T = 1 RT_list = [RT.reshape(3, 4) for RT in RT_list] elif dataset == "syn": scale_T = (470 / K_1) / 7.5 """ 4.694746736956946052e+02 0.000000000000000000e+00 4.800000000000000000e+02 0.000000000000000000e+00 4.694746736956946052e+02 2.700000000000000000e+02 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 """ elif dataset == "zero123": scale_T = 0.5 else: raise Exception("invalid dataset type") # convert x y z to x -y -z if dataset == "zero123": flip_matrix = np.array([[1, 0, 0], [0, -1, 0], [0, 0, -1]]) for i in range(len(RT_list)): RT_list[i] = np.dot(flip_matrix, RT_list[i]) temp = [] first_frame_RT = copy.deepcopy(RT_list[0]) # first_frame_R_inv = np.linalg.inv(first_frame_RT[:,:3]) first_frame_R_inv = first_frame_RT[:, :3].T first_frame_T = first_frame_RT[:, -1] for RT in RT_list: RT[:, :3] = np.dot(RT[:, :3], first_frame_R_inv) RT[:, -1] = RT[:, -1] - np.dot(RT[:, :3], first_frame_T) RT[:, -1] = RT[:, -1] * scale_T temp.append(RT) RT_list = temp if dataset == "realestate": RT_list = [RT.reshape(-1) for RT in RT_list] return RT_list def sigma_matrix2(sig_x, sig_y, theta): """Calculate the rotated sigma matrix (two dimensional matrix). Args: sig_x (float): sig_y (float): theta (float): Radian measurement. Returns: ndarray: Rotated sigma matrix. """ d_matrix = np.array([[sig_x**2, 0], [0, sig_y**2]]) u_matrix = np.array( [[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]] ) return np.dot(u_matrix, np.dot(d_matrix, u_matrix.T)) def mesh_grid(kernel_size): """Generate the mesh grid, centering at zero. Args: kernel_size (int): Returns: xy (ndarray): with the shape (kernel_size, kernel_size, 2) xx (ndarray): with the shape (kernel_size, kernel_size) yy (ndarray): with the shape (kernel_size, kernel_size) """ ax = np.arange(-kernel_size // 2 + 1.0, kernel_size // 2 + 1.0) xx, yy = np.meshgrid(ax, ax) xy = np.hstack( ( xx.reshape((kernel_size * kernel_size, 1)), yy.reshape(kernel_size * kernel_size, 1), ) ).reshape(kernel_size, kernel_size, 2) return xy, xx, yy def pdf2(sigma_matrix, grid): """Calculate PDF of the bivariate Gaussian distribution. Args: sigma_matrix (ndarray): with the shape (2, 2) grid (ndarray): generated by :func:`mesh_grid`, with the shape (K, K, 2), K is the kernel size. Returns: kernel (ndarrray): un-normalized kernel. """ inverse_sigma = np.linalg.inv(sigma_matrix) kernel = np.exp(-0.5 * np.sum(np.dot(grid, inverse_sigma) * grid, 2)) return kernel def bivariate_Gaussian(kernel_size, sig_x, sig_y, theta, grid=None, isotropic=True): """Generate a bivariate isotropic or anisotropic Gaussian kernel. In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored. Args: kernel_size (int): sig_x (float): sig_y (float): theta (float): Radian measurement. grid (ndarray, optional): generated by :func:`mesh_grid`, with the shape (K, K, 2), K is the kernel size. Default: None isotropic (bool): Returns: kernel (ndarray): normalized kernel. """ if grid is None: grid, _, _ = mesh_grid(kernel_size) if isotropic: sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]]) else: sigma_matrix = sigma_matrix2(sig_x, sig_y, theta) kernel = pdf2(sigma_matrix, grid) kernel = kernel / np.sum(kernel) return kernel def rgba_to_rgb_with_bg(rgba_image, bg_color=(255, 255, 255)): """ Convert a PIL RGBA Image to an RGB Image with a white background. Args: rgba_image (Image): A PIL Image object in RGBA mode. Returns: Image: A PIL Image object in RGB mode with white background. """ # Ensure the image is in RGBA mode # Ensure the image is in RGBA mode if rgba_image.mode != "RGBA": return rgba_image # raise ValueError("The image must be in RGBA mode") # Create a white background image white_bg_rgb = Image.new("RGB", rgba_image.size, bg_color) # Paste the RGBA image onto the white background using alpha channel as mask white_bg_rgb.paste( rgba_image, mask=rgba_image.split()[3] ) # 3 is the alpha channel index return white_bg_rgb def random_order_preserving_selection(items, num): if num > len(items): print("WARNING: Item list is shorter than `num` given.") return items selected_indices = sorted(random.sample(range(len(items)), num)) selected_items = [items[i] for i in selected_indices] return selected_items def pad_pil_image_to_square(image, fill_color=(255, 255, 255)): """ Pad an image to make it square with the given fill color. Args: image (PIL.Image): The original image. fill_color (tuple): The color to use for padding (default is black). Returns: PIL.Image: A new image that is padded to be square. """ width, height = image.size # Determine the new size, which will be the maximum of width or height new_size = max(width, height) # Create a new image with the new size and fill color new_image = Image.new("RGB", (new_size, new_size), fill_color) # Calculate the position to paste the original image onto the new image # This calculation centers the original image in the new square canvas left = (new_size - width) // 2 top = (new_size - height) // 2 # Paste the original image into the new image new_image.paste(image, (left, top)) return new_image