import torch.nn as nn from utils.utils import instantiate_from_config def disabled_train(self, mode=True): """Overwrite model.train with this function to make sure train/eval mode does not change anymore.""" return self def zero_module(module): """ Zero out the parameters of a module and return it. """ for p in module.parameters(): p.detach().zero_() return module def scale_module(module, scale): """ Scale the parameters of a module and return it. """ for p in module.parameters(): p.detach().mul_(scale) return module def conv_nd(dims, *args, **kwargs): """ Create a 1D, 2D, or 3D convolution module. """ if dims == 1: return nn.Conv1d(*args, **kwargs) elif dims == 2: return nn.Conv2d(*args, **kwargs) elif dims == 3: return nn.Conv3d(*args, **kwargs) raise ValueError(f"unsupported dimensions: {dims}") def linear(*args, **kwargs): """ Create a linear module. """ return nn.Linear(*args, **kwargs) def avg_pool_nd(dims, *args, **kwargs): """ Create a 1D, 2D, or 3D average pooling module. """ if dims == 1: return nn.AvgPool1d(*args, **kwargs) elif dims == 2: return nn.AvgPool2d(*args, **kwargs) elif dims == 3: return nn.AvgPool3d(*args, **kwargs) raise ValueError(f"unsupported dimensions: {dims}") def nonlinearity(type="silu"): if type == "silu": return nn.SiLU() elif type == "leaky_relu": return nn.LeakyReLU() class GroupNormSpecific(nn.GroupNorm): def forward(self, x): return super().forward(x.float()).type(x.dtype) def normalization(channels, num_groups=32): """ Make a standard normalization layer. :param channels: number of input channels. :param num_groups: number of groupseg. :return: an nn.Module for normalization. """ return GroupNormSpecific(num_groups, channels) class HybridConditioner(nn.Module): def __init__(self, c_concat_config, c_crossattn_config): super().__init__() self.concat_conditioner = instantiate_from_config(c_concat_config) self.crossattn_conditioner = instantiate_from_config(c_crossattn_config) def forward(self, c_concat, c_crossattn): c_concat = self.concat_conditioner(c_concat) c_crossattn = self.crossattn_conditioner(c_crossattn) return {"c_concat": [c_concat], "c_crossattn": [c_crossattn]}