"""SAMPLING ONLY.""" import numpy as np import torch from einops import rearrange from tqdm import tqdm from core.common import noise_like from core.models.utils_diffusion import ( make_ddim_sampling_parameters, make_ddim_time_steps, rescale_noise_cfg, ) class DDIMSampler(object): def __init__(self, model, schedule="linear", **kwargs): super().__init__() self.model = model self.ddpm_num_time_steps = model.num_time_steps self.schedule = schedule self.counter = 0 def register_buffer(self, name, attr): if type(attr) == torch.Tensor: if attr.device != torch.device("cuda"): attr = attr.to(torch.device("cuda")) setattr(self, name, attr) def make_schedule( self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0.0, verbose=True ): self.ddim_time_steps = make_ddim_time_steps( ddim_discr_method=ddim_discretize, num_ddim_time_steps=ddim_num_steps, num_ddpm_time_steps=self.ddpm_num_time_steps, verbose=verbose, ) alphas_cumprod = self.model.alphas_cumprod assert ( alphas_cumprod.shape[0] == self.ddpm_num_time_steps ), "alphas have to be defined for each timestep" def to_torch(x): return x.clone().detach().to(torch.float32).to(self.model.device) if self.model.use_dynamic_rescale: self.ddim_scale_arr = self.model.scale_arr[self.ddim_time_steps] self.ddim_scale_arr_prev = torch.cat( [self.ddim_scale_arr[0:1], self.ddim_scale_arr[:-1]] ) self.register_buffer("betas", to_torch(self.model.betas)) self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod)) self.register_buffer( "alphas_cumprod_prev", to_torch(self.model.alphas_cumprod_prev) ) # calculations for diffusion q(x_t | x_{t-1}) and others self.register_buffer( "sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod.cpu())) ) self.register_buffer( "sqrt_one_minus_alphas_cumprod", to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())), ) self.register_buffer( "log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod.cpu())) ) self.register_buffer( "sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod.cpu())) ) self.register_buffer( "sqrt_recipm1_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)), ) # ddim sampling parameters ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters( alphacums=alphas_cumprod.cpu(), ddim_time_steps=self.ddim_time_steps, eta=ddim_eta, verbose=verbose, ) self.register_buffer("ddim_sigmas", ddim_sigmas) self.register_buffer("ddim_alphas", ddim_alphas) self.register_buffer("ddim_alphas_prev", ddim_alphas_prev) self.register_buffer("ddim_sqrt_one_minus_alphas", np.sqrt(1.0 - ddim_alphas)) sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (1 - self.alphas_cumprod / self.alphas_cumprod_prev) ) self.register_buffer( "ddim_sigmas_for_original_num_steps", sigmas_for_original_sampling_steps ) @torch.no_grad() def sample( self, S, batch_size, shape, conditioning=None, callback=None, img_callback=None, quantize_x0=False, eta=0.0, mask=None, x0=None, temperature=1.0, noise_dropout=0.0, score_corrector=None, corrector_kwargs=None, verbose=True, schedule_verbose=False, x_T=None, log_every_t=100, unconditional_guidance_scale=1.0, unconditional_conditioning=None, unconditional_guidance_scale_extra=1.0, unconditional_conditioning_extra=None, with_extra_returned_data=False, **kwargs, ): # check condition bs if conditioning is not None: if isinstance(conditioning, dict): try: cbs = conditioning[list(conditioning.keys())[0]].shape[0] except: cbs = conditioning[list(conditioning.keys())[0]][0].shape[0] if cbs != batch_size: print( f"Warning: Got {cbs} conditionings but batch-size is {batch_size}" ) else: if conditioning.shape[0] != batch_size: print( f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}" ) self.skip_step = self.ddpm_num_time_steps // S discr_method = ( "uniform_trailing" if self.model.rescale_betas_zero_snr else "uniform" ) self.make_schedule( ddim_num_steps=S, ddim_discretize=discr_method, ddim_eta=eta, verbose=schedule_verbose, ) # make shape if len(shape) == 3: C, H, W = shape size = (batch_size, C, H, W) elif len(shape) == 4: T, C, H, W = shape size = (batch_size, T, C, H, W) else: assert False, f"Invalid shape: {shape}." out = self.ddim_sampling( conditioning, size, callback=callback, img_callback=img_callback, quantize_denoised=quantize_x0, mask=mask, x0=x0, ddim_use_original_steps=False, noise_dropout=noise_dropout, temperature=temperature, score_corrector=score_corrector, corrector_kwargs=corrector_kwargs, x_T=x_T, log_every_t=log_every_t, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_conditioning=unconditional_conditioning, unconditional_guidance_scale_extra=unconditional_guidance_scale_extra, unconditional_conditioning_extra=unconditional_conditioning_extra, verbose=verbose, with_extra_returned_data=with_extra_returned_data, **kwargs, ) if with_extra_returned_data: samples, intermediates, extra_returned_data = out return samples, intermediates, extra_returned_data else: samples, intermediates = out return samples, intermediates @torch.no_grad() def ddim_sampling( self, cond, shape, x_T=None, ddim_use_original_steps=False, callback=None, time_steps=None, quantize_denoised=False, mask=None, x0=None, img_callback=None, log_every_t=100, temperature=1.0, noise_dropout=0.0, score_corrector=None, corrector_kwargs=None, unconditional_guidance_scale=1.0, unconditional_conditioning=None, unconditional_guidance_scale_extra=1.0, unconditional_conditioning_extra=None, verbose=True, with_extra_returned_data=False, **kwargs, ): device = self.model.betas.device b = shape[0] if x_T is None: img = torch.randn(shape, device=device, dtype=self.model.dtype) if self.model.bd_noise: noise_decor = self.model.bd(img) noise_decor = (noise_decor - noise_decor.mean()) / ( noise_decor.std() + 1e-5 ) noise_f = noise_decor[:, :, 0:1, :, :] noise = ( np.sqrt(self.model.bd_ratio) * noise_decor[:, :, 1:] + np.sqrt(1 - self.model.bd_ratio) * noise_f ) img = torch.cat([noise_f, noise], dim=2) else: img = x_T if time_steps is None: time_steps = ( self.ddpm_num_time_steps if ddim_use_original_steps else self.ddim_time_steps ) elif time_steps is not None and not ddim_use_original_steps: subset_end = ( int( min(time_steps / self.ddim_time_steps.shape[0], 1) * self.ddim_time_steps.shape[0] ) - 1 ) time_steps = self.ddim_time_steps[:subset_end] intermediates = {"x_inter": [img], "pred_x0": [img]} time_range = ( reversed(range(0, time_steps)) if ddim_use_original_steps else np.flip(time_steps) ) total_steps = time_steps if ddim_use_original_steps else time_steps.shape[0] if verbose: iterator = tqdm(time_range, desc="DDIM Sampler", total=total_steps) else: iterator = time_range # Sampling Loop for i, step in enumerate(iterator): print(f"Sample: i={i}, step={step}.") index = total_steps - i - 1 ts = torch.full((b,), step, device=device, dtype=torch.long) print("ts=", ts) # use mask to blend noised original latent (img_orig) & new sampled latent (img) if mask is not None: assert x0 is not None img_orig = x0 # keep original & modify use img img = img_orig * mask + (1.0 - mask) * img outs = self.p_sample_ddim( img, cond, ts, index=index, use_original_steps=ddim_use_original_steps, quantize_denoised=quantize_denoised, temperature=temperature, noise_dropout=noise_dropout, score_corrector=score_corrector, corrector_kwargs=corrector_kwargs, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_conditioning=unconditional_conditioning, unconditional_guidance_scale_extra=unconditional_guidance_scale_extra, unconditional_conditioning_extra=unconditional_conditioning_extra, with_extra_returned_data=with_extra_returned_data, **kwargs, ) if with_extra_returned_data: img, pred_x0, extra_returned_data = outs else: img, pred_x0 = outs if callback: callback(i) if img_callback: img_callback(pred_x0, i) # log_every_t = 1 if index % log_every_t == 0 or index == total_steps - 1: intermediates["x_inter"].append(img) intermediates["pred_x0"].append(pred_x0) # intermediates['extra_returned_data'].append(extra_returned_data) if with_extra_returned_data: return img, intermediates, extra_returned_data return img, intermediates def batch_time_transpose( self, batch_time_tensor, num_target_views, num_condition_views ): # Input: N*N; N = T+C assert num_target_views + num_condition_views == batch_time_tensor.shape[1] target_tensor = batch_time_tensor[:, :num_target_views, ...] # T*T condition_tensor = batch_time_tensor[:, num_target_views:, ...] # N*C target_tensor = target_tensor.transpose(0, 1) # T*T return torch.concat([target_tensor, condition_tensor], dim=1) def ddim_batch_shard_step( self, pred_x0_post_process_function, pred_x0_post_process_function_kwargs, cond, corrector_kwargs, ddim_use_original_steps, device, img, index, kwargs, noise_dropout, quantize_denoised, score_corrector, step, temperature, with_extra_returned_data, ): img_list = [] pred_x0_list = [] shard_step = 5 shard_start = 0 while shard_start < img.shape[0]: shard_end = shard_start + shard_step if shard_start >= img.shape[0]: break if shard_end > img.shape[0]: shard_end = img.shape[0] print( f"Sampling Batch Shard: From #{shard_start} to #{shard_end}. Total: {img.shape[0]}." ) sub_img = img[shard_start:shard_end] sub_cond = { "combined_condition": cond["combined_condition"][shard_start:shard_end], "c_crossattn": [ cond["c_crossattn"][0][0:1].expand(shard_end - shard_start, -1, -1) ], } ts = torch.full((sub_img.shape[0],), step, device=device, dtype=torch.long) _img, _pred_x0 = self.p_sample_ddim( sub_img, sub_cond, ts, index=index, use_original_steps=ddim_use_original_steps, quantize_denoised=quantize_denoised, temperature=temperature, noise_dropout=noise_dropout, score_corrector=score_corrector, corrector_kwargs=corrector_kwargs, unconditional_guidance_scale=1.0, unconditional_conditioning=None, unconditional_guidance_scale_extra=1.0, unconditional_conditioning_extra=None, pred_x0_post_process_function=pred_x0_post_process_function, pred_x0_post_process_function_kwargs=pred_x0_post_process_function_kwargs, with_extra_returned_data=with_extra_returned_data, **kwargs, ) img_list.append(_img) pred_x0_list.append(_pred_x0) shard_start += shard_step img = torch.concat(img_list, dim=0) pred_x0 = torch.concat(pred_x0_list, dim=0) return img, pred_x0 @torch.no_grad() def p_sample_ddim( self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False, temperature=1.0, noise_dropout=0.0, score_corrector=None, corrector_kwargs=None, unconditional_guidance_scale=1.0, unconditional_conditioning=None, unconditional_guidance_scale_extra=1.0, unconditional_conditioning_extra=None, with_extra_returned_data=False, **kwargs, ): b, *_, device = *x.shape, x.device if x.dim() == 5: is_video = True else: is_video = False extra_returned_data = None if unconditional_conditioning is None or unconditional_guidance_scale == 1.0: e_t_cfg = self.model.apply_model(x, t, c, **kwargs) # unet denoiser if isinstance(e_t_cfg, tuple): e_t_cfg = e_t_cfg[0] extra_returned_data = e_t_cfg[1:] else: # with unconditional condition if isinstance(c, torch.Tensor) or isinstance(c, dict): e_t = self.model.apply_model(x, t, c, **kwargs) e_t_uncond = self.model.apply_model( x, t, unconditional_conditioning, **kwargs ) if ( unconditional_guidance_scale_extra != 1.0 and unconditional_conditioning_extra is not None ): print(f"Using extra CFG: {unconditional_guidance_scale_extra}...") e_t_uncond_extra = self.model.apply_model( x, t, unconditional_conditioning_extra, **kwargs ) else: e_t_uncond_extra = None else: raise NotImplementedError if isinstance(e_t, tuple): e_t = e_t[0] extra_returned_data = e_t[1:] if isinstance(e_t_uncond, tuple): e_t_uncond = e_t_uncond[0] if isinstance(e_t_uncond_extra, tuple): e_t_uncond_extra = e_t_uncond_extra[0] # text cfg if ( unconditional_guidance_scale_extra != 1.0 and unconditional_conditioning_extra is not None ): e_t_cfg = ( e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond) + unconditional_guidance_scale_extra * (e_t - e_t_uncond_extra) ) else: e_t_cfg = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond) if self.model.rescale_betas_zero_snr: e_t_cfg = rescale_noise_cfg(e_t_cfg, e_t, guidance_rescale=0.7) if self.model.parameterization == "v": e_t = self.model.predict_eps_from_z_and_v(x, t, e_t_cfg) else: e_t = e_t_cfg if score_corrector is not None: assert self.model.parameterization == "eps", "not implemented" e_t = score_corrector.modify_score( self.model, e_t, x, t, c, **corrector_kwargs ) alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas alphas_prev = ( self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev ) sqrt_one_minus_alphas = ( self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas ) sigmas = ( self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas ) # select parameters corresponding to the currently considered timestep if is_video: size = (b, 1, 1, 1, 1) else: size = (b, 1, 1, 1) a_t = torch.full(size, alphas[index], device=device) a_prev = torch.full(size, alphas_prev[index], device=device) sigma_t = torch.full(size, sigmas[index], device=device) sqrt_one_minus_at = torch.full( size, sqrt_one_minus_alphas[index], device=device ) # current prediction for x_0 if self.model.parameterization != "v": pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() else: pred_x0 = self.model.predict_start_from_z_and_v(x, t, e_t_cfg) if self.model.use_dynamic_rescale: scale_t = torch.full(size, self.ddim_scale_arr[index], device=device) prev_scale_t = torch.full( size, self.ddim_scale_arr_prev[index], device=device ) rescale = prev_scale_t / scale_t pred_x0 *= rescale if quantize_denoised: pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t noise = noise_like(x.shape, device, repeat_noise) if self.model.bd_noise: noise_decor = self.model.bd(noise) noise_decor = (noise_decor - noise_decor.mean()) / ( noise_decor.std() + 1e-5 ) noise_f = noise_decor[:, :, 0:1, :, :] noise = ( np.sqrt(self.model.bd_ratio) * noise_decor[:, :, 1:] + np.sqrt(1 - self.model.bd_ratio) * noise_f ) noise = torch.cat([noise_f, noise], dim=2) noise = sigma_t * noise * temperature if noise_dropout > 0.0: noise = torch.nn.functional.dropout(noise, p=noise_dropout) x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise if with_extra_returned_data: return x_prev, pred_x0, extra_returned_data return x_prev, pred_x0