import importlib import numpy as np import torch import torch.distributed as dist def count_params(model, verbose=False): total_params = sum(p.numel() for p in model.parameters()) if verbose: print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.") return total_params def check_istarget(name, para_list): """ name: full name of source para para_list: partial name of target para """ istarget = False for para in para_list: if para in name: return True return istarget def instantiate_from_config(config): if not "target" in config: if config == "__is_first_stage__": return None elif config == "__is_unconditional__": return None raise KeyError("Expected key `target` to instantiate.") return get_obj_from_str(config["target"])(**config.get("params", dict())) def get_obj_from_str(string, reload=False): module, cls = string.rsplit(".", 1) if reload: module_imp = importlib.import_module(module) importlib.reload(module_imp) return getattr(importlib.import_module(module, package=None), cls) def load_npz_from_dir(data_dir): data = [ np.load(os.path.join(data_dir, data_name))["arr_0"] for data_name in os.listdir(data_dir) ] data = np.concatenate(data, axis=0) return data def load_npz_from_paths(data_paths): data = [np.load(data_path)["arr_0"] for data_path in data_paths] data = np.concatenate(data, axis=0) return data def setup_dist(args): if dist.is_initialized(): return torch.cuda.set_device(args.local_rank) torch.distributed.init_process_group("nccl", init_method="env://")