import requests from PIL import Image, UnidentifiedImageError from transformers import AutoTokenizer, AutoImageProcessor, VisionEncoderDecoderModel import gradio as gr import os # Load the model, tokenizer, and image processor with error handling def load_model_and_components(model_name): try: model = VisionEncoderDecoderModel.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) image_processor = AutoImageProcessor.from_pretrained(model_name) return model, tokenizer, image_processor except Exception as e: raise RuntimeError(f"Error loading model components: {e}") current_model_name = "laicsiifes/swin-distilbertimbau" model, tokenizer, image_processor = load_model_and_components(current_model_name) # Function to process the image and generate a caption def generate_caption(image): try: pixel_values = image_processor(image, return_tensors="pt").pixel_values generated_ids = model.generate(pixel_values) caption = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] return caption except Exception: return "Please upload a valid image." # Predefined images for selection image_folder = "images" predefined_images_paths = [ os.path.join(image_folder, fname) for fname in os.listdir(image_folder) if fname.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif')) ] # Gradio app def app(image=None): try: if image is None: return "Please upload a valid image." return generate_caption(image) except Exception: return "Please upload a valid image." # Define UI with gr.Blocks() as interface: gr.Markdown(""" # Welcome to the LAICSI-IFES space for Vision Encoder-Decoder (VED) demonstration --- ### Be patient with the Swin-GPorTuguese-2 as it is heavier than the Swin-DistilBERTimbau. """) with gr.Row(): with gr.Column(): model_selector = gr.Dropdown(choices=["laicsiifes/swin-distilbertimbau", "laicsiifes/swin-gportuguese-2"], value="laicsiifes/swin-distilbertimbau", label="Select Model") loading_message = gr.Textbox(label="Status Message") image_display = gr.Image(type="pil", label="Image Preview", interactive=False) upload_button = gr.File(label="Upload an Image", file_types=["image"], type="filepath") examples = gr.Examples(predefined_images_paths, inputs=[upload_button], label="Examples") with gr.Column(): output_text = gr.Textbox(label="Generated Caption") # Define logic def handle_uploaded_image(image): try: if image is None: return None, "Please upload a valid image." pil_image = Image.open(image).convert("RGB") return pil_image, generate_caption(pil_image) except Exception: return None, "Please upload a valid image." def switch_model(selected_model): gr.Info("Loading model... Please wait.") return "Loading model... Please wait.", None, None, None def load_new_model(selected_model): global model, tokenizer, image_processor model, tokenizer, image_processor = load_model_and_components(selected_model) return "Model loaded successfully.", None, None, None model_selector.change(fn=switch_model, inputs=model_selector, outputs=[loading_message, upload_button, image_display, output_text]) model_selector.change(fn=load_new_model, inputs=model_selector, outputs=[loading_message, image_display, output_text]) upload_button.change(fn=handle_uploaded_image, inputs=upload_button, outputs=[image_display, output_text]) interface.launch(share=False)