import gradio as gr import numpy as np from PIFuHD.data import EvalWMetaDataset from PIFuHD.data.ImageBundle import ImageBundle from PIFuHD.options import BaseOptions from PIFuHD.recontructor import Reconstructor from huggingface_hub import hf_hub_download from human_pose_estimator import PoseEstimator from estimator import rect REPO_ID = "cxeep/PIFuHD" pose_estimator = PoseEstimator("cpu") checkpoint_path = hf_hub_download(repo_id=REPO_ID, filename="pifuhd.pt") cmd = [ '--dataroot', './data', '--results_path', './results', '--loadSize', '1024', '--resolution', '256', '--load_netMR_checkpoint_path', checkpoint_path, '--start_id', '-1', '--end_id', '-1' ] parser = BaseOptions() opts = parser.parse(cmd) reconstructor = Reconstructor(opts) def make_bundle(image, name): image, rects = rect(pose_estimator, image) return ImageBundle(img=image, name=name, meta=rects) def predict(img: np.ndarray): bundle = make_bundle(img, "Model3D") dataset = EvalWMetaDataset(opts, [bundle]) return reconstructor.evaluate(dataset) footer = r"""
Demo for PIFuHD
""" with gr.Blocks(title="PIFuHD") as app: gr.HTML("

3D Human Digitization

") gr.HTML("

PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization (CVPR 2020)

") with gr.Row(equal_height=False): with gr.Column(): input_img = gr.Image(type="numpy", label="Input image") run_btn = gr.Button(variant="primary") with gr.Column(): output_obj = gr.Model3D(label="Output model") output_img = gr.Image(type="filepath", label="Output image") gr.ClearButton(components=[input_img, output_img, output_obj], variant="stop") run_btn.click(predict, [input_img], [output_img, output_obj]) with gr.Row(): blobs = [[f"examples/{x:02d}.png"] for x in range(1, 4)] examples = gr.Dataset(components=[input_img], samples=blobs) examples.click(lambda x: x[0], [examples], [input_img]) with gr.Row(): gr.HTML(footer) app.launch(share=False, debug=True, show_error=True) app.queue()