""" Live monitor of the website statistics and leaderboard. Dependency: sudo apt install pkg-config libicu-dev pip install pytz gradio gdown plotly polyglot pyicu pycld2 tabulate """ import argparse import ast import json import pickle import os import threading import time import pandas as pd import gradio as gr import numpy as np from fastchat.serve.monitor.basic_stats import report_basic_stats, get_log_files from fastchat.serve.monitor.clean_battle_data import clean_battle_data from fastchat.serve.monitor.elo_analysis import report_elo_analysis_results from fastchat.utils import build_logger, get_window_url_params_js notebook_url = ( "https://colab.research.google.com/drive/1KdwokPjirkTmpO_P1WByFNFiqxWQquwH" ) basic_component_values = [None] * 6 leader_component_values = [None] * 5 def make_default_md_1(arena_df, elo_results, mirror=False): link_color = "#1976D2" # This color should be clear in both light and dark mode leaderboard_md = f""" # 🏆 LMSYS Chatbot Arena Leaderboard Blog | Paper | GitHub | Dataset | Twitter | Discord """ return leaderboard_md def make_default_md_2(arena_df, elo_results, mirror=False): mirror_str = "This is a mirror of the live leaderboard created and maintained by the LMSYS Organization. Please link to leaderboard.lmsys.org for citation purposes." leaderboard_md = f""" {mirror_str if mirror else ""} LMSYS Chatbot Arena is a crowdsourced open platform for LLM evals. We've collected over 800,000 human pairwise comparisons to rank LLMs with the Bradley-Terry model and display the model ratings in Elo-scale. You can find more details in our paper. **Chatbot arena is dependent on community participation, please contribute by casting your vote!** """ return leaderboard_md def make_arena_leaderboard_md(arena_df, last_updated_time): total_votes = sum(arena_df["num_battles"]) // 2 total_models = len(arena_df) space = "   " leaderboard_md = f""" Total #models: **{total_models}**.{space} Total #votes: **{"{:,}".format(total_votes)}**.{space} Last updated: {last_updated_time}. 📣 **NEW!** View leaderboard for different categories (e.g., coding, long user query)! This is still in preview and subject to change. Code to recreate leaderboard tables and plots in this [notebook]({notebook_url}). You can contribute your vote at [chat.lmsys.org](https://chat.lmsys.org)! ***Rank (UB)**: model's ranking (upper-bound), defined by one + the number of models that are statistically better than the target model. Model A is statistically better than model B when A's lower-bound score is greater than B's upper-bound score (in 95% confidence interval). See Figure 1 below for visualization of the confidence intervals of model scores. """ return leaderboard_md def make_category_arena_leaderboard_md(arena_df, arena_subset_df, name="Overall"): total_votes = sum(arena_df["num_battles"]) // 2 total_models = len(arena_df) space = "   " total_subset_votes = sum(arena_subset_df["num_battles"]) // 2 total_subset_models = len(arena_subset_df) leaderboard_md = f"""### {cat_name_to_explanation[name]} #### {space} #models: **{total_subset_models} ({round(total_subset_models/total_models *100)}%)** {space} #votes: **{"{:,}".format(total_subset_votes)} ({round(total_subset_votes/total_votes * 100)}%)**{space} """ return leaderboard_md def make_full_leaderboard_md(elo_results): leaderboard_md = """ Three benchmarks are displayed: **Arena Elo**, **MT-Bench** and **MMLU**. - [Chatbot Arena](https://chat.lmsys.org/?arena) - a crowdsourced, randomized battle platform. We use 500K+ user votes to compute model strength. - [MT-Bench](https://arxiv.org/abs/2306.05685): a set of challenging multi-turn questions. We use GPT-4 to grade the model responses. - [MMLU](https://arxiv.org/abs/2009.03300) (5-shot): a test to measure a model's multitask accuracy on 57 tasks. 💻 Code: The MT-bench scores (single-answer grading on a scale of 10) are computed by [fastchat.llm_judge](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge). The MMLU scores are mostly computed by [InstructEval](https://github.com/declare-lab/instruct-eval). Higher values are better for all benchmarks. Empty cells mean not available. """ return leaderboard_md def make_leaderboard_md_live(elo_results): leaderboard_md = f""" # Leaderboard Last updated: {elo_results["last_updated_datetime"]} {elo_results["leaderboard_table"]} """ return leaderboard_md def update_elo_components( max_num_files, elo_results_file, ban_ip_file, exclude_model_names ): log_files = get_log_files(max_num_files) # Leaderboard if elo_results_file is None: # Do live update ban_ip_list = json.load(open(ban_ip_file)) if ban_ip_file else None battles = clean_battle_data( log_files, exclude_model_names, ban_ip_list=ban_ip_list ) elo_results = report_elo_analysis_results(battles, scale=2) leader_component_values[0] = make_leaderboard_md_live(elo_results) leader_component_values[1] = elo_results["win_fraction_heatmap"] leader_component_values[2] = elo_results["battle_count_heatmap"] leader_component_values[3] = elo_results["bootstrap_elo_rating"] leader_component_values[4] = elo_results["average_win_rate_bar"] # Basic stats basic_stats = report_basic_stats(log_files) md0 = f"Last updated: {basic_stats['last_updated_datetime']}" md1 = "### Action Histogram\n" md1 += basic_stats["action_hist_md"] + "\n" md2 = "### Anony. Vote Histogram\n" md2 += basic_stats["anony_vote_hist_md"] + "\n" md3 = "### Model Call Histogram\n" md3 += basic_stats["model_hist_md"] + "\n" md4 = "### Model Call (Last 24 Hours)\n" md4 += basic_stats["num_chats_last_24_hours"] + "\n" basic_component_values[0] = md0 basic_component_values[1] = basic_stats["chat_dates_bar"] basic_component_values[2] = md1 basic_component_values[3] = md2 basic_component_values[4] = md3 basic_component_values[5] = md4 def update_worker( max_num_files, interval, elo_results_file, ban_ip_file, exclude_model_names ): while True: tic = time.time() update_elo_components( max_num_files, elo_results_file, ban_ip_file, exclude_model_names ) durtaion = time.time() - tic print(f"update duration: {durtaion:.2f} s") time.sleep(max(interval - durtaion, 0)) def load_demo(url_params, request: gr.Request): logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}") return basic_component_values + leader_component_values def model_hyperlink(model_name, link): return f'{model_name}' def load_leaderboard_table_csv(filename, add_hyperlink=True): lines = open(filename).readlines() heads = [v.strip() for v in lines[0].split(",")] rows = [] for i in range(1, len(lines)): row = [v.strip() for v in lines[i].split(",")] for j in range(len(heads)): item = {} for h, v in zip(heads, row): if h == "Arena Elo rating": if v != "-": v = int(ast.literal_eval(v)) else: v = np.nan elif h == "MMLU": if v != "-": v = round(ast.literal_eval(v) * 100, 1) else: v = np.nan elif h == "MT-bench (win rate %)": if v != "-": v = round(ast.literal_eval(v[:-1]), 1) else: v = np.nan elif h == "MT-bench (score)": if v != "-": v = round(ast.literal_eval(v), 2) else: v = np.nan item[h] = v if add_hyperlink: item["Model"] = model_hyperlink(item["Model"], item["Link"]) rows.append(item) return rows def build_basic_stats_tab(): empty = "Loading ..." basic_component_values[:] = [empty, None, empty, empty, empty, empty] md0 = gr.Markdown(empty) gr.Markdown("#### Figure 1: Number of model calls and votes") plot_1 = gr.Plot(show_label=False) with gr.Row(): with gr.Column(): md1 = gr.Markdown(empty) with gr.Column(): md2 = gr.Markdown(empty) with gr.Row(): with gr.Column(): md3 = gr.Markdown(empty) with gr.Column(): md4 = gr.Markdown(empty) return [md0, plot_1, md1, md2, md3, md4] def get_full_table(arena_df, model_table_df): values = [] for i in range(len(model_table_df)): row = [] model_key = model_table_df.iloc[i]["key"] model_name = model_table_df.iloc[i]["Model"] # model display name row.append(model_name) if model_key in arena_df.index: idx = arena_df.index.get_loc(model_key) row.append(round(arena_df.iloc[idx]["rating"])) else: row.append(np.nan) row.append(model_table_df.iloc[i]["MT-bench (score)"]) row.append(model_table_df.iloc[i]["MMLU"]) # Organization row.append(model_table_df.iloc[i]["Organization"]) # license row.append(model_table_df.iloc[i]["License"]) values.append(row) values.sort(key=lambda x: -x[1] if not np.isnan(x[1]) else 1e9) return values def create_ranking_str(ranking, ranking_difference): if ranking_difference > 0: return f"{int(ranking)} \u2191" elif ranking_difference < 0: return f"{int(ranking)} \u2193" else: return f"{int(ranking)}" def recompute_final_ranking(arena_df): # compute ranking based on CI ranking = {} for i, model_a in enumerate(arena_df.index): ranking[model_a] = 1 for j, model_b in enumerate(arena_df.index): if i == j: continue if ( arena_df.loc[model_b]["rating_q025"] > arena_df.loc[model_a]["rating_q975"] ): ranking[model_a] += 1 return list(ranking.values()) def highlight_top_models(df): def highlight_max_rank(s): # Pastel Yellow with transparency, rgba(red, green, blue, alpha) highlight_color = "rgba(255, 255, 128, 0.2)" # 50% transparent if int(s["Rank* (UB)"].replace("↑", "").replace("↓", "")) == 1: return [f"background-color: {highlight_color}" for _ in s] else: return ["" for _ in s] # Apply and return the styled DataFrame return df.apply(highlight_max_rank, axis=1) def get_arena_table(arena_df, model_table_df, arena_subset_df=None): arena_df = arena_df.sort_values( by=["final_ranking", "rating"], ascending=[True, False] ) arena_df["final_ranking"] = recompute_final_ranking(arena_df) arena_df = arena_df.sort_values( by=["final_ranking", "rating"], ascending=[True, False] ) # sort by rating if arena_subset_df is not None: # filter out models not in the arena_df arena_subset_df = arena_subset_df[arena_subset_df.index.isin(arena_df.index)] arena_subset_df = arena_subset_df.sort_values(by=["rating"], ascending=False) arena_subset_df["final_ranking"] = recompute_final_ranking(arena_subset_df) # keep only the models in the subset in arena_df and recompute final_ranking arena_df = arena_df[arena_df.index.isin(arena_subset_df.index)] # recompute final ranking arena_df["final_ranking"] = recompute_final_ranking(arena_df) # assign ranking by the order arena_subset_df["final_ranking_no_tie"] = range(1, len(arena_subset_df) + 1) arena_df["final_ranking_no_tie"] = range(1, len(arena_df) + 1) # join arena_df and arena_subset_df on index arena_df = arena_subset_df.join( arena_df["final_ranking"], rsuffix="_global", how="inner" ) arena_df["ranking_difference"] = ( arena_df["final_ranking_global"] - arena_df["final_ranking"] ) arena_df = arena_df.sort_values( by=["final_ranking", "rating"], ascending=[True, False] ) arena_df["final_ranking"] = arena_df.apply( lambda x: create_ranking_str(x["final_ranking"], x["ranking_difference"]), axis=1, ) arena_df["final_ranking"] = arena_df["final_ranking"].astype(str) values = [] for i in range(len(arena_df)): row = [] model_key = arena_df.index[i] try: # this is a janky fix for where the model key is not in the model table (model table and arena table dont contain all the same models) model_name = model_table_df[model_table_df["key"] == model_key][ "Model" ].values[0] # rank ranking = arena_df.iloc[i].get("final_ranking") or i + 1 row.append(ranking) if arena_subset_df is not None: row.append(arena_df.iloc[i].get("ranking_difference") or 0) # model display name row.append(model_name) # elo rating row.append(round(arena_df.iloc[i]["rating"])) upper_diff = round( arena_df.iloc[i]["rating_q975"] - arena_df.iloc[i]["rating"] ) lower_diff = round( arena_df.iloc[i]["rating"] - arena_df.iloc[i]["rating_q025"] ) row.append(f"+{upper_diff}/-{lower_diff}") # num battles row.append(round(arena_df.iloc[i]["num_battles"])) # Organization row.append( model_table_df[model_table_df["key"] == model_key][ "Organization" ].values[0] ) # license row.append( model_table_df[model_table_df["key"] == model_key]["License"].values[0] ) cutoff_date = model_table_df[model_table_df["key"] == model_key][ "Knowledge cutoff date" ].values[0] if cutoff_date == "-": row.append("Unknown") else: row.append(cutoff_date) values.append(row) except Exception as e: print(f"{model_key} - {e}") return values key_to_category_name = { "full": "Overall", "dedup": "De-duplicate Top Redundant Queries (soon to be default)", "coding": "Coding", "hard_6": "Hard Prompts (Overall)", "hard_english_6": "Hard Prompts (English)", "long_user": "Longer Query", "english": "English", "chinese": "Chinese", "french": "French", "german": "German", "spanish": "Spanish", "russian": "Russian", "japanese": "Japanese", "no_tie": "Exclude Ties", "no_short": "Exclude Short Query (< 5 tokens)", "no_refusal": "Exclude Refusal", "overall_limit_5_user_vote": "overall_limit_5_user_vote", "full_old": "Overall (Deprecated)", } cat_name_to_explanation = { "Overall": "Overall Questions", "De-duplicate Top Redundant Queries (soon to be default)": "De-duplicate top redundant queries (top 0.1%). See details in [blog post](https://lmsys.org/blog/2024-05-17-category-hard/#note-enhancing-quality-through-de-duplication).", "Coding": "Coding: whether conversation contains code snippets", "Hard Prompts (Overall)": "Hard Prompts (Overall): details in [blog post](https://lmsys.org/blog/2024-05-17-category-hard/)", "Hard Prompts (English)": "Hard Prompts (English), note: the delta is to English Category. details in [blog post](https://lmsys.org/blog/2024-05-17-category-hard/)", "Longer Query": "Longer Query (>= 500 tokens)", "English": "English Prompts", "Chinese": "Chinese Prompts", "French": "French Prompts", "German": "German Prompts", "Spanish": "Spanish Prompts", "Russian": "Russian Prompts", "Japanese": "Japanese Prompts", "Exclude Ties": "Exclude Ties and Bothbad", "Exclude Short Query (< 5 tokens)": "Exclude Short User Query (< 5 tokens)", "Exclude Refusal": 'Exclude model responses with refusal (e.g., "I cannot answer")', "overall_limit_5_user_vote": "overall_limit_5_user_vote", "Overall (Deprecated)": "Overall without De-duplicating Top Redundant Queries (top 0.1%). See details in [blog post](https://lmsys.org/blog/2024-05-17-category-hard/#note-enhancing-quality-through-de-duplication).", } cat_name_to_baseline = { "Hard Prompts (English)": "English", } def build_leaderboard_tab( elo_results_file, leaderboard_table_file, show_plot=False, mirror=False ): arena_dfs = {} category_elo_results = {} if elo_results_file is None: # Do live update default_md = "Loading ..." p1 = p2 = p3 = p4 = None else: with open(elo_results_file, "rb") as fin: elo_results = pickle.load(fin) last_updated_time = None if "full" in elo_results: last_updated_time = elo_results["full"]["last_updated_datetime"].split( " " )[0] for k in key_to_category_name.keys(): if k not in elo_results: continue arena_dfs[key_to_category_name[k]] = elo_results[k][ "leaderboard_table_df" ] category_elo_results[key_to_category_name[k]] = elo_results[k] p1 = category_elo_results["Overall"]["win_fraction_heatmap"] p2 = category_elo_results["Overall"]["battle_count_heatmap"] p3 = category_elo_results["Overall"]["bootstrap_elo_rating"] p4 = category_elo_results["Overall"]["average_win_rate_bar"] arena_df = arena_dfs["Overall"] default_md = make_default_md_1( arena_df, category_elo_results["Overall"], mirror=mirror ) default_md_2 = make_default_md_2( arena_df, category_elo_results["Overall"], mirror=mirror ) with gr.Row(): with gr.Column(scale=4): md_1 = gr.Markdown(default_md, elem_id="leaderboard_markdown") with gr.Column(scale=1): vote_button = gr.Button("Vote!", link="https://chat.lmsys.org") md2 = gr.Markdown(default_md_2, elem_id="leaderboard_markdown") if leaderboard_table_file: data = load_leaderboard_table_csv(leaderboard_table_file) model_table_df = pd.DataFrame(data) with gr.Tabs() as tabs: # arena table arena_table_vals = get_arena_table(arena_df, model_table_df) with gr.Tab("Arena", id=0): md = make_arena_leaderboard_md(arena_df, last_updated_time) gr.Markdown(md, elem_id="leaderboard_markdown") with gr.Row(): with gr.Column(scale=2): category_dropdown = gr.Dropdown( choices=list(arena_dfs.keys()), label="Category", value="Overall", ) default_category_details = make_category_arena_leaderboard_md( arena_df, arena_df, name="Overall" ) with gr.Column(scale=4, variant="panel"): category_deets = gr.Markdown( default_category_details, elem_id="category_deets" ) arena_vals = pd.DataFrame( arena_table_vals, columns=[ "Rank* (UB)", "Model", "Arena Elo", "95% CI", "Votes", "Organization", "License", "Knowledge Cutoff", ], ) elo_display_df = gr.Dataframe( headers=[ "Rank* (UB)", "Model", "Arena Elo", "95% CI", "Votes", "Organization", "License", "Knowledge Cutoff", ], datatype=[ "str", "markdown", "number", "str", "number", "str", "str", "str", ], # value=highlight_top_models(arena_vals.style), value=arena_vals.style, elem_id="arena_leaderboard_dataframe", height=700, column_widths=[70, 190, 100, 100, 90, 130, 150, 100], wrap=True, ) gr.Markdown( f"""Note: in each category, we exclude models with fewer than 300 votes as their confidence intervals can be large.""", elem_id="leaderboard_markdown", ) leader_component_values[:] = [default_md, p1, p2, p3, p4] if show_plot: more_stats_md = gr.Markdown( f"""## More Statistics for Chatbot Arena (Overall)""", elem_id="leaderboard_header_markdown", ) with gr.Row(): with gr.Column(): gr.Markdown( "#### Figure 1: Confidence Intervals on Model Strength (via Bootstrapping)", elem_id="plot-title", ) plot_3 = gr.Plot(p3, show_label=False) with gr.Column(): gr.Markdown( "#### Figure 2: Average Win Rate Against All Other Models (Assuming Uniform Sampling and No Ties)", elem_id="plot-title", ) plot_4 = gr.Plot(p4, show_label=False) with gr.Row(): with gr.Column(): gr.Markdown( "#### Figure 3: Fraction of Model A Wins for All Non-tied A vs. B Battles", elem_id="plot-title", ) plot_1 = gr.Plot( p1, show_label=False, elem_id="plot-container" ) with gr.Column(): gr.Markdown( "#### Figure 4: Battle Count for Each Combination of Models (without Ties)", elem_id="plot-title", ) plot_2 = gr.Plot(p2, show_label=False) with gr.Tab("Full Leaderboard", id=1): md = make_full_leaderboard_md(elo_results) gr.Markdown(md, elem_id="leaderboard_markdown") full_table_vals = get_full_table(arena_df, model_table_df) gr.Dataframe( headers=[ "Model", "Arena Elo", "MT-bench", "MMLU", "Organization", "License", ], datatype=["markdown", "number", "number", "number", "str", "str"], value=full_table_vals, elem_id="full_leaderboard_dataframe", column_widths=[200, 100, 100, 100, 150, 150], height=700, wrap=True, ) if not show_plot: gr.Markdown( """ ## Visit our [HF space](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard) for more analysis! If you want to see more models, please help us [add them](https://github.com/lm-sys/FastChat/blob/main/docs/arena.md#how-to-add-a-new-model). """, elem_id="leaderboard_markdown", ) else: pass def update_leaderboard_df(arena_table_vals): elo_datarame = pd.DataFrame( arena_table_vals, columns=[ "Rank* (UB)", "Delta", "Model", "Arena Elo", "95% CI", "Votes", "Organization", "License", "Knowledge Cutoff", ], ) # goal: color the rows based on the rank with styler def highlight_max(s): # all items in S which contain up arrow should be green, down arrow should be red, otherwise black return [ "color: green; font-weight: bold" if "\u2191" in v else "color: red; font-weight: bold" if "\u2193" in v else "" for v in s ] def highlight_rank_max(s): return [ "color: green; font-weight: bold" if v > 0 else "color: red; font-weight: bold" if v < 0 else "" for v in s ] return elo_datarame.style.apply(highlight_max, subset=["Rank* (UB)"]).apply( highlight_rank_max, subset=["Delta"] ) def update_leaderboard_and_plots(category): arena_subset_df = arena_dfs[category] arena_subset_df = arena_subset_df[arena_subset_df["num_battles"] > 300] elo_subset_results = category_elo_results[category] baseline_category = cat_name_to_baseline.get(category, "Overall") arena_df = arena_dfs[baseline_category] arena_values = get_arena_table( arena_df, model_table_df, arena_subset_df=arena_subset_df if category != "Overall" else None, ) if category != "Overall": arena_values = update_leaderboard_df(arena_values) # arena_values = highlight_top_models(arena_values) arena_values = gr.Dataframe( headers=[ "Rank* (UB)", "Delta", "Model", "Arena Elo", "95% CI", "Votes", "Organization", "License", "Knowledge Cutoff", ], datatype=[ "str", "number", "markdown", "number", "str", "number", "str", "str", "str", ], value=arena_values, elem_id="arena_leaderboard_dataframe", height=700, column_widths=[70, 70, 200, 90, 100, 90, 120, 150, 100], wrap=True, ) else: # not_arena_values = pd.DataFrame(arena_values, columns=["Rank* (UB)", # "Model", # "Arena Elo", # "95% CI", # "Votes", # "Organization", # "License", # "Knowledge Cutoff",], # ) # arena_values = highlight_top_models(not_arena_values.style) arena_values = gr.Dataframe( headers=[ "Rank* (UB)", "Model", "Arena Elo", "95% CI", "Votes", "Organization", "License", "Knowledge Cutoff", ], datatype=[ "str", "markdown", "number", "str", "number", "str", "str", "str", ], value=arena_values, elem_id="arena_leaderboard_dataframe", height=700, column_widths=[70, 190, 100, 100, 90, 140, 150, 100], wrap=True, ) p1 = elo_subset_results["win_fraction_heatmap"] p2 = elo_subset_results["battle_count_heatmap"] p3 = elo_subset_results["bootstrap_elo_rating"] p4 = elo_subset_results["average_win_rate_bar"] more_stats_md = f"""## More Statistics for Chatbot Arena - {category} """ leaderboard_md = make_category_arena_leaderboard_md( arena_df, arena_subset_df, name=category ) return arena_values, p1, p2, p3, p4, more_stats_md, leaderboard_md category_dropdown.change( update_leaderboard_and_plots, inputs=[category_dropdown], outputs=[ elo_display_df, plot_1, plot_2, plot_3, plot_4, more_stats_md, category_deets, ], ) from fastchat.serve.gradio_web_server import acknowledgment_md with gr.Accordion( "Citation", open=True, ): citation_md = """ ### Citation Please cite the following paper if you find our leaderboard or dataset helpful. ``` @misc{chiang2024chatbot, title={Chatbot Arena: An Open Platform for Evaluating LLMs by Human Preference}, author={Wei-Lin Chiang and Lianmin Zheng and Ying Sheng and Anastasios Nikolas Angelopoulos and Tianle Li and Dacheng Li and Hao Zhang and Banghua Zhu and Michael Jordan and Joseph E. Gonzalez and Ion Stoica}, year={2024}, eprint={2403.04132}, archivePrefix={arXiv}, primaryClass={cs.AI} } """ gr.Markdown(citation_md, elem_id="leaderboard_markdown") gr.Markdown(acknowledgment_md, elem_id="ack_markdown") if show_plot: return [md_1, plot_1, plot_2, plot_3, plot_4] return [md_1] def build_demo(elo_results_file, leaderboard_table_file): from fastchat.serve.gradio_web_server import block_css text_size = gr.themes.sizes.text_lg # load theme from theme.json theme = gr.themes.Default.load("theme.json") # set text size to large theme.text_size = text_size theme.set( button_large_text_size="40px", button_small_text_size="40px", button_large_text_weight="1000", button_small_text_weight="1000", button_shadow="*shadow_drop_lg", button_shadow_hover="*shadow_drop_lg", checkbox_label_shadow="*shadow_drop_lg", button_shadow_active="*shadow_inset", button_secondary_background_fill="*primary_300", button_secondary_background_fill_dark="*primary_700", button_secondary_background_fill_hover="*primary_200", button_secondary_background_fill_hover_dark="*primary_500", button_secondary_text_color="*primary_800", button_secondary_text_color_dark="white", ) with gr.Blocks( title="Chatbot Arena Leaderboard", # theme=gr.themes.Default(text_size=text_size), theme=theme, css=block_css, ) as demo: with gr.Tabs() as tabs: with gr.Tab("Leaderboard", id=0): leader_components = build_leaderboard_tab( elo_results_file, leaderboard_table_file, show_plot=True, mirror=False, ) with gr.Tab("Basic Stats", id=1): basic_components = build_basic_stats_tab() url_params = gr.JSON(visible=False) demo.load( load_demo, [url_params], basic_components + leader_components, js=get_window_url_params_js, ) return demo if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--host", type=str, default="0.0.0.0") parser.add_argument("--port", type=int) parser.add_argument("--share", action="store_true") parser.add_argument("--concurrency-count", type=int, default=10) parser.add_argument("--update-interval", type=int, default=300) parser.add_argument("--max-num-files", type=int) parser.add_argument("--elo-results-file", type=str) parser.add_argument("--leaderboard-table-file", type=str) parser.add_argument("--ban-ip-file", type=str) parser.add_argument("--exclude-model-names", type=str, nargs="+") args = parser.parse_args() logger = build_logger("monitor", "monitor.log") logger.info(f"args: {args}") if args.elo_results_file is None: # Do live update update_thread = threading.Thread( target=update_worker, args=( args.max_num_files, args.update_interval, args.elo_results_file, args.ban_ip_file, args.exclude_model_names, ), ) update_thread.start() demo = build_demo(args.elo_results_file, args.leaderboard_table_file) demo.queue( default_concurrency_limit=args.concurrency_count, status_update_rate=10, api_open=False, ).launch( server_name=args.host, server_port=args.port, share=args.share, max_threads=200, )