import gradio as gr from gradio_client import Client, handle_file import numpy as np MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 flux_1_schell_spaces = ["https://black-forest-labs-flux-1-schnell.hf.space", "ChristianHappy/FLUX.1-schnell", "innoai/FLUX.1-schnell", "tuan2308/FLUX.1-schnell", "FiditeNemini/FLUX.1-schnell"] # flux_1_schnell_space = "https://black-forest-labs-flux-1-schnell.hf.space" client = None job = None def infer(selected_space, prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): global job global client # Asegúrate de que selected_space_index esté inicializado antes de este bloque de código max_attempts = len(flux_1_schell_spaces) attempts = 0 try: client = Client(selected_space) print(f"Loaded custom model from {selected_space}") except ValueError as e: print(f"Failed to load custom model from {selected_space}: {e}") client = None if client is None: raise gr.Error("Failed to load client after trying all spaces.") try: job = client.submit( prompt=prompt, seed=seed, randomize_seed=randomize_seed, width=width, height=height, num_inference_steps=num_inference_steps, api_name="/infer" ) result = job.result() except ValueError as e: client = None raise gr.Error(e) return result examples = [ "a tiny astronaut hatching from an egg on the moon", "a cat holding a sign that says hello world", "an anime illustration of a wiener schnitzel", ] css=""" #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: selected_space_index = gr.State(0); with gr.Column(elem_id="col-container"): gr.Markdown(f"""# FLUX.1 [schnell] [black-forest-labs/FLUX.1-schnell](https://huggingface.co/spaces/black-forest-labs/FLUX.1-schnell) 12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation [[blog](https://blackforestlabs.ai/2024/07/31/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)] """) space = gr.Radio(flux_1_schell_spaces, label="HF Space", value=flux_1_schell_spaces[0]) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=4, ) # gr.Examples( # examples = examples, # fn = infer, # inputs = [selected_space_index, prompt], # outputs = [selected_space_index, space, result, seed], # cache_examples="lazy" # ) gr.on( triggers=[run_button.click, prompt.submit], fn = infer, inputs = [space, prompt, seed, randomize_seed, width, height, num_inference_steps], outputs = [result, seed] ) demo.launch()