import sys sys.path.append('./diffab-repo') import os import shutil import pandas as pd import yaml import subprocess import streamlit as st import stmol import py3Dmol import tempfile import re import abnumber import gzip import tarfile import torch from tqdm.auto import tqdm from Bio import PDB from collections import OrderedDict from diffab.tools.renumber import renumber as renumber_antibody from diffab.tools.renumber.run import ( biopython_chain_to_sequence, assign_number_to_sequence, ) DIFFAB_DIR = os.path.realpath('./diffab-repo') CDR_OPTIONS = OrderedDict() CDR_OPTIONS['H_CDR1'] = 'H1' CDR_OPTIONS['H_CDR2'] = 'H2' CDR_OPTIONS['H_CDR3'] = 'H3' CDR_OPTIONS['L_CDR1'] = 'L1' CDR_OPTIONS['L_CDR2'] = 'L2' CDR_OPTIONS['L_CDR3'] = 'L3' DESIGN_MODES = OrderedDict() DESIGN_MODES['denovo'] = 'De novo design' DESIGN_MODES['denovo_dock'] = 'De novo design (with HDOCK)' DESIGN_MODES['opt'] = 'Optimization' DESIGN_MODES['fixbb'] = 'Fix-backbone' MODE_CONFIG = { 'denovo': './configs/test/codesign_multicdrs.yml', 'denovo_dock': './configs/test/codesign_multicdrs.yml', 'opt': './configs/test/abopt_singlecdr.yml', 'fixbb': './configs/test/fixbb.yml', } GPU_AVAILABLE = torch.cuda.is_available() DEFAULT_NUM_SAMPLES = 5 if GPU_AVAILABLE else 1 DEFAULT_NUM_DOCKS = 3 def dict_to_func(d): def f(x): return d[x] return f def get_config(save_dir, mode, cdrs, num_samples=5, optimization_step=4): tmpl_path = MODE_CONFIG[mode] with open(tmpl_path, 'r') as f: cfg = yaml.safe_load(f) cfg['sampling']['cdrs'] = cdrs cfg['sampling']['num_samples'] = num_samples cfg['sampling']['optimize_steps'] = [optimization_step, ] save_path = os.path.join(save_dir, 'design.yml') with open(save_path, 'w') as f: yaml.dump(cfg, f) return cfg, save_path def run_design(pdb_path, config_path, output_dir, docking, display_widget, num_docks=DEFAULT_NUM_DOCKS): if docking: cmd = f"python design_dock.py --antigen {pdb_path} --config {config_path} --num_docks {num_docks} " else: cmd = f"python design_pdb.py {pdb_path} --config {config_path} " cmd += f"--batch_size 1 --out_root {output_dir} " if GPU_AVAILABLE: cmd += "--device cuda" else: cmd += "--device cpu" result_dir = os.path.join(output_dir, 'design') if os.path.exists(result_dir): shutil.rmtree(result_dir) output_buffer = '' proc = subprocess.Popen( cmd, shell=True, env=os.environ.copy(), bufsize=1, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, cwd=DIFFAB_DIR, ) for line in iter(proc.stdout.readline, b''): output_buffer += line.decode() display_widget.code( '\n'.join(output_buffer.splitlines()[-10:]), ) proc.stdout.close() proc.wait() @st.cache def renumber_antibody_cached(in_pdb, out_pdb, file_id): return renumber_antibody( in_pdb, out_pdb, return_other_chains=True ) def gather_results(result_dir): outputs = [] for root, dirs, files in os.walk(result_dir): for fname in files: if not re.match('^\d\d\d\d\.pdb$', fname): continue fpath = os.path.join(root, fname) gname = os.path.basename(root) outputs.append((gname, fname, fpath)) parser = PDB.PDBParser(QUIET=True) records = [] fpath_to_name = {} for gname, fname, fpath in tqdm(outputs): name = f"{gname}_{fname}" structure = parser.get_structure(name, fpath) model = structure[0] record = { 'name': name, 'H1': None, 'H2': None, 'H3': None, 'L1': None, 'L2': None, 'L3': None, 'gname': gname, 'fname': fname, 'fpath': fpath, } for chain in model: try: seq, reslist = biopython_chain_to_sequence(chain) numbers, abchain = assign_number_to_sequence(seq) if abchain.chain_type == 'H': record['H1'] = abchain.cdr1_seq record['H2'] = abchain.cdr2_seq record['H3'] = abchain.cdr3_seq elif abchain.chain_type in ('L', 'K'): record['L1'] = abchain.cdr1_seq record['L2'] = abchain.cdr2_seq record['L3'] = abchain.cdr3_seq except abnumber.ChainParseError as e: pass records.append(record) fpath_to_name[fpath] = name with tarfile.open(os.path.join(result_dir, 'generated.tar.gz'), 'w:gz') as tar: for record in records: info = tar.gettarinfo(record['fpath']) info.name = record['name'] tar.addfile( tarinfo = info, fileobj = open(record['fpath'], 'rb'), ) records = pd.DataFrame(records) return records, fpath_to_name def main(): # Temporary workspace directory if 'tempdir_path' not in st.session_state: tempdir_path = tempfile.mkdtemp(prefix='streamlit') st.session_state.tempdir_path = tempdir_path else: tempdir_path = st.session_state.tempdir_path # Page layout st.set_page_config(layout="wide") st.markdown( "# DiffAb \n\n" "Antigen-Specific Antibody Design and Optimization with Diffusion-Based Generative Models for Protein Structures (NeurIPS 2022) \n\n" "[[Paper](https://www.biorxiv.org/content/10.1101/2022.07.10.499510.abstract)] " "[[Code](https://github.com/luost26/diffab)]" ) left_col, right_col = st.columns(2) # Step 1: Upload PDB or choose an example uploaded_file = None with left_col: uploaded_file = st.file_uploader( 'Antigen structure or antibody-antigen complex', # disabled=True ) if uploaded_file is None: with st.expander('Download examples', expanded=True): with open('./data/examples/7DK2_AB_C.pdb', 'r') as f: st.download_button( 'RBD + Antibody Complex', data = f, file_name='RBD_AbAg.pdb', ) with open('./data/examples/Omicron_RBD.pdb', 'r') as f: st.download_button( 'RBD Antigen Only', data = f, file_name = 'RBD_AgOnly.pdb', ) st.text('Please upload the downloaded PDB file to run the demo.') if 'submit' not in st.session_state: st.session_state.submit = False if 'done' not in st.session_state: st.session_state.done = False # Step 1.2: Retrieve uploaded PDB if uploaded_file is not None: pdb_path = os.path.join(tempdir_path, 'structure.pdb') renum_path = os.path.join(tempdir_path, 'structure_renumber.pdb') with open(pdb_path, 'w') as f: f.write(uploaded_file.getvalue().decode()) H_chains, L_chains, Ag_chains = renumber_antibody_cached( in_pdb = pdb_path, out_pdb = renum_path, file_id = uploaded_file.id ) H_chain = H_chains[0] if H_chains else None L_chain = L_chains[0] if L_chains else None docking = H_chain is None and L_chain is None # Step 2: Design options if uploaded_file is not None: with left_col: st.dataframe(pd.DataFrame({ 'Heavy': {'Chain': H_chain}, 'Light': {'Chain': L_chain}, 'Antigen': {'Chain': ','.join(Ag_chains)}, }), use_container_width=True) form = st.form('design_form') with form: if H_chain is None and L_chain is None: # Antigen only cdr_options = ['H_CDR1', 'H_CDR2', 'H_CDR3', 'L_CDR1', 'L_CDR2', 'L_CDR3'] cdr_default = ['H_CDR1', 'H_CDR2', 'H_CDR3'] mode_options = ['denovo_dock'] elif H_chain is not None and L_chain is None: # Heavy chain + Antigen cdr_options = ['H_CDR1', 'H_CDR2', 'H_CDR3'] cdr_default = ['H_CDR1', 'H_CDR2', 'H_CDR3'] mode_options = ['denovo', 'opt', 'fixbb'] elif H_chain is None and L_chain is not None: # Light chain + Antigen cdr_options = ['L_CDR1', 'L_CDR2', 'L_CDR3'] cdr_default = ['L_CDR1', 'L_CDR2', 'L_CDR3'] mode_options = ['denovo', 'opt', 'fixbb'] else: # H + L + Ag cdr_options = ['H_CDR1', 'H_CDR2', 'H_CDR3', 'L_CDR1', 'L_CDR2', 'L_CDR3'] cdr_default = ['H_CDR1', 'H_CDR2', 'H_CDR3'] mode_options = ['denovo', 'opt', 'fixbb'] design_mode = st.radio( 'Mode', mode_options, format_func=dict_to_func(DESIGN_MODES), # disabled=True, ) cdr_choices = st.multiselect( 'CDRs', cdr_options, default = cdr_default, format_func=dict_to_func(CDR_OPTIONS), # disabled=True, ) if docking: num_docks = st.slider( 'Number of docking poses', min_value=1, max_value=10, value=DEFAULT_NUM_DOCKS, ) else: num_docks = 0 num_designs = st.slider( 'Number of samples', min_value=1, max_value=10, value=DEFAULT_NUM_SAMPLES, ) submit = st.form_submit_button('Run') st.session_state.submit = st.session_state.submit or submit if submit: st.session_state.done = False # Step 3: Prepare configuration and run design if uploaded_file is not None and st.session_state.submit: config, config_path = get_config( save_dir = tempdir_path, mode = design_mode, cdrs = cdr_choices, num_samples = num_designs, ) with right_col: result_molecule_display = st.empty() result_select_widget = st.empty() result_table_display = st.empty() result_download_btn = st.empty() output_display = st.empty() if not st.session_state.done: run_design( pdb_path = renum_path, config_path = config_path, output_dir = tempdir_path, docking = docking, display_widget = output_display, num_docks = num_docks, ) st.session_state.done = True result_dir = os.path.join(tempdir_path, 'design') df_cols = ['name'] + list(CDR_OPTIONS.values()) df_results, fpath_to_name = gather_results(result_dir) st.session_state.results = (df_results, fpath_to_name) # Step 5: Show results: if st.session_state.submit and st.session_state.done: result_dir = os.path.join(tempdir_path, 'design') df_results, fpath_to_name = st.session_state.results df_cols = ['name'] + list(CDR_OPTIONS.values()) result_table_display.dataframe(df_results[df_cols], use_container_width=True) display_pdb_path = result_select_widget.selectbox( label = "Visualize", options = df_results['fpath'], format_func = dict_to_func(fpath_to_name), ) with open(os.path.join(result_dir, 'generated.tar.gz'), 'rb') as f: result_download_btn.download_button( label = "Download PDBs", data = f, file_name = "generated.tar.gz", ) if not os.path.exists(display_pdb_path): display_pdb_path = df_results['fpath'][0] with open(display_pdb_path, 'r') as f: pdb_str = f.read() xyzview = py3Dmol.view(width=380, height=380) xyzview.addModelsAsFrames(pdb_str) xyzview.setStyle({'cartoon':{'color':'spectrum'}}) xyzview.zoomTo() with result_molecule_display: stmol.showmol(xyzview, width=380, height=380) if __name__ == '__main__': main()