import torch from functools import reduce import torch.nn as nn import torch.nn.functional as F from functools import partial class FeedForward(nn.Module): def __init__(self, frame_hidden, mlp_ratio, n_vecs, t2t_params, p): """ Args: frame_hidden: hidden size of frame features mlp_ratio: mlp ratio in the middle layer of the transformers n_vecs: number of vectors in the transformer t2t_params: dictionary -> {'kernel_size': kernel_size, 'stride': stride, 'padding': padding, 'output_size': output_shape} p: dropout rate, 0 by default """ super(FeedForward, self).__init__() self.conv = nn.Sequential( nn.Linear(frame_hidden, frame_hidden * mlp_ratio), nn.ReLU(inplace=True), nn.Dropout(p), nn.Linear(frame_hidden * mlp_ratio, frame_hidden), nn.Dropout(p) ) def forward(self, x, n_vecs=0, output_h=0, output_w=0): x = self.conv(x) return x class FusionFeedForward(nn.Module): def __init__(self, frame_hidden, mlp_ratio, n_vecs, t2t_params, p): super(FusionFeedForward, self).__init__() self.kernel_shape = reduce((lambda x, y: x * y), t2t_params['kernel_size']) self.t2t_params = t2t_params hidden_size = self.kernel_shape * mlp_ratio self.conv1 = nn.Linear(frame_hidden, hidden_size) self.conv2 = nn.Sequential( nn.ReLU(inplace=True), nn.Dropout(p), nn.Linear(hidden_size, frame_hidden), nn.Dropout(p) ) assert t2t_params is not None and n_vecs is not None tp = t2t_params.copy() self.fold = nn.Fold(**tp) del tp['output_size'] self.unfold = nn.Unfold(**tp) self.n_vecs = n_vecs def forward(self, x, n_vecs=0, output_h=0, output_w=0): x = self.conv1(x) b, n, c = x.size() if n_vecs != 0: normalizer = x.new_ones(b, n, self.kernel_shape).view(-1, n_vecs, self.kernel_shape).permute(0, 2, 1) x = self.unfold(F.fold(x.view(-1, n_vecs, c).permute(0, 2, 1), output_size=(output_h, output_w), kernel_size=self.t2t_params['kernel_size'], stride=self.t2t_params['stride'], padding=self.t2t_params['padding']) / F.fold(normalizer, output_size=(output_h, output_w), kernel_size=self.t2t_params[ 'kernel_size'], stride=self.t2t_params['stride'], padding=self.t2t_params[ 'padding'])).permute(0, 2, 1).contiguous().view( b, n, c) else: normalizer = x.new_ones(b, n, self.kernel_shape).view(-1, self.n_vecs, self.kernel_shape).permute(0, 2, 1) x = self.unfold(self.fold(x.view(-1, self.n_vecs, c).permute(0, 2, 1)) / self.fold(normalizer)).permute(0, 2, 1).contiguous().view( b, n, c) x = self.conv2(x) return x class ResidualBlock_noBN(nn.Module): """Residual block w/o BN ---Conv-ReLU-Conv-+- |________________| """ def __init__(self, nf=64): super(ResidualBlock_noBN, self).__init__() self.conv1 = nn.Conv2d(nf, nf, kernel_size=3, stride=1, padding=1, bias=True) self.conv2 = nn.Conv2d(nf, nf, kernel_size=3, stride=1, padding=1, bias=True) self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) def forward(self, x): """ Args: x: with shape of [b, c, t, h, w] Returns: processed features with shape [b, c, t, h, w] """ identity = x out = self.lrelu(self.conv1(x)) out = self.conv2(out) out = identity + out # Remove ReLU at the end of the residual block # http://torch.ch/blog/2016/02/04/resnets.html return out def make_layer(block, n_layers): layers = [] for _ in range(n_layers): layers.append(block()) return nn.Sequential(*layers)