import torch def flow_reversal(flow): """ flow: shape [b, c, h, w] return: backward flow in corresponding to the forward flow The formula is borrowed from Quadratic Video Interpolation (4) """ b, c, h, w = flow.shape y = flow[:, 0:1, :, :] x = flow[:, 1:2, :, :] # [b, 1, h, w] x = x.repeat(1, c, 1, 1) y = y.repeat(1, c, 1, 1) # get the four points of the square (x1, y1), (x1, y2), (x2, y1), (x2, y2) x1 = torch.floor(x) x2 = x1 + 1 y1 = torch.floor(y) y2 = y1 + 1 # get gaussian weights w11, w12, w21, w22 = get_gaussian_weights(x, y, x1, x2, y1, y2) # calculate the weight maps for each optical flows flow11, o11 = sample_one(flow, x1, y1, w11) flow12, o12 = sample_one(flow, x1, y2, w12) flow21, o21 = sample_one(flow, x2, y1, w21) flow22, o22 = sample_one(flow, x2, y2, w22) # fuse all the reversed flows based on equation (4) flow_o = flow11 + flow12 + flow21 + flow22 o = o11 + o12 + o21 + o22 flow_o = -flow_o flow_o[o > 0] = flow_o[o > 0] / o[o > 0] return flow_o def get_gaussian_weights(x, y, x1, x2, y1, y2): sigma = 1 w11 = torch.exp(-((x - x1) ** 2 + (y - y1) ** 2) / (sigma ** 2)) w12 = torch.exp(-((x - x1) ** 2 + (y - y2) ** 2) / (sigma ** 2)) w21 = torch.exp(-((x - x2) ** 2 + (y - y1) ** 2) / (sigma ** 2)) w22 = torch.exp(-((x - x2) ** 2 + (y - y2) ** 2) / (sigma ** 2)) return w11, w12, w21, w22 def sample_one(flow, shiftx, shifty, weight): b, c, h, w = flow.shape flat_shiftx = shiftx.view(-1) # [h * w] flat_shifty = shifty.view(-1) # [h * w] flat_basex = torch.arange(0, h, requires_grad=False).view(-1, 1).long().repeat(b, c, 1, w).view(-1) # [h * w] flat_basey = torch.arange(0, w, requires_grad=False).view(-1, 1).long().repeat(b, c, h, 1).view(-1) # [h * w] flat_weight = weight.reshape(-1) # [h * w] flat_flow = flow.reshape(-1) idxn = torch.arange(0, b, requires_grad=False).view(b, 1, 1, 1).long().repeat(1, c, h, w).view(-1) idxc = torch.arange(0, c, requires_grad=False).view(1, c, 1, 1).long().repeat(b, 1, h, w).view(-1) idxx = flat_shiftx.long() + flat_basex # size [-1] idxy = flat_shifty.long() + flat_basey # size [-1] # record the shifted pixels inside the image boundaries mask = idxx.ge(0) & idxx.lt(h) & idxy.ge(0) & idxy.lt(w) # mask off points out of boundaries ids = idxn * c * h * w + idxc * h * w + idxx * w + idxy ids_mask = torch.masked_select(ids, mask).clone() # put the value into corresponding regions flow_warp = torch.zeros([b * c * h * w]) flow_warp.put_(ids_mask, torch.masked_select(flat_flow * flat_weight, mask), accumulate=True) one_warp = torch.zeros([b * c * h * w]) one_warp.put_(ids_mask, torch.masked_select(flat_weight, mask), accumulate=True) return flow_warp.view(b, c, h, w), one_warp.view(b, c, h, w)