import pandas as pd import streamlit as st from my_model.tabs.run_inference import run_inference class UIManager: def __init__(self): self.tabs = { "Home": self.display_home, "Dataset Analysis": self.display_dataset_analysis, "Finetuning and Evaluation Results": self.display_finetuning_evaluation, "Run Inference": self.display_run_inference, "Dissertation Report": self.display_dissertation_report, "Code": self.display_code, "More Pages will follow .. ": self.display_placeholder } def add_tab(self, tab_name, display_function): self.tabs[tab_name] = display_function def display_sidebar(self): st.sidebar.title("Navigation") selection = st.sidebar.radio("Go to", list(self.tabs.keys())) st.sidebar.write("More Pages will follow .. ") return selection def display_selected_page(self, selection): if selection in self.tabs: self.tabs[selection]() def display_home(self): st.title("MultiModal Learning for Knowledge-Based Visual Question Answering") st.write("""This application is an interactive element of the project and prepared by Mohammed Alhaj as part of the dissertation for Masters degree in Artificial Intelligence at the University of Bath. Further details will be updated later""") def display_dataset_analysis(self): st.title("OK-VQA Dataset Analysis") st.write("This is a Place Holder until the contents are uploaded.") def display_finetuning_evaluation(self): st.title("Finetuning and Evaluation Results") st.write("This is a Place Holder until the contents are uploaded.") def display_run_inference(self): run_inference() def display_dissertation_report(self): st.title("Dissertation Report") st.write("Click the link below to view the PDF.") st.download_button( label="Download PDF", data=open("Files/Dissertation Report.pdf", "rb"), file_name="example.pdf", mime="application/octet-stream" ) def display_code(self): st.title("Code") st.markdown("You can view the code for this project on the Hugging Face Space file page.") st.markdown("[View Code](https://huggingface.co/spaces/m7mdal7aj/Mohammed_Alhaj_PlayGround/tree/main)", unsafe_allow_html=True) def display_placeholder(self): st.title("Stay Tuned") st.write("This is a Place Holder until the contents are uploaded.") class StateManager: def __init__(self): self.initialize_state() def initialize_state(self): if 'images_data' not in st.session_state: st.session_state['images_data'] = {} if 'model_settings' not in st.session_state: st.session_state['model_settings'] = {'detection_model': None, 'confidence_level': None} if 'kbvqa' not in st.session_state: st.session_state['kbvqa'] = None if 'selected_method' not in st.session_state: st.session_state['selected_method'] = None def update_model_settings(self, detection_model=None, confidence_level=None, selected_method=None): if detection_model is not None: st.session_state['model_settings']['detection_model'] = detection_model if confidence_level is not None: st.session_state['model_settings']['confidence_level'] = confidence_level if selected_method is not None: st.session_state['selected_method'] = selected_method def check_settings_changed(self, current_selected_method, current_detection_model, current_confidence_level): return (st.session_state['model_settings']['detection_model'] != current_detection_model or st.session_state['model_settings']['confidence_level'] != current_confidence_level or st.session_state['selected_method'] != current_selected_method) def display_model_settings(self): st.write("### Current Model Settings:") st.table(pd.DataFrame(st.session_state['model_settings'], index=[0])) def display_session_state(self): st.write("### Current Session State:") data = [{'Key': key, 'Value': str(value)} for key, value in st.session_state.items()] df = pd.DataFrame(data) st.table(df) def get_model(self): """Retrieve the KBVQA model from the session state.""" return st.session_state.get('kbvqa', None) def is_model_loaded(self): return 'kbvqa' in st.session_state and st.session_state['kbvqa'] is not None def reload_detection_model(self, detection_model, confidence_level): try: free_gpu_resources() if self.is_model_loaded(): prepare_kbvqa_model(detection_model, only_reload_detection_model=True) st.session_state['kbvqa'].detection_confidence = confidence_level self.update_model_settings(detection_model, confidence_level) free_gpu_resources() except Exception as e: st.error(f"Error reloading detection model: {e}") # New methods to be added def process_new_image(self, image_key, image, kbvqa): if image_key not in st.session_state['images_data']: st.session_state['images_data'][image_key] = { 'image': image, 'caption': '', 'detected_objects_str': '', 'qa_history': [], 'analysis_done': False } def analyze_image(self, image, kbvqa): img = copy.deepcopy(image) caption = kbvqa.get_caption(img) image_with_boxes, detected_objects_str = kbvqa.detect_objects(img) return caption, detected_objects_str, image_with_boxes def add_to_qa_history(self, image_key, question, answer): if image_key in st.session_state['images_data']: st.session_state['images_data'][image_key]['qa_history'].append((question, answer)) def get_images_data(self): return st.session_state['images_data'] def update_image_data(self, image_key, caption, detected_objects_str, analysis_done): if image_key in st.session_state['images_data']: st.session_state['images_data'][image_key].update({ 'caption': caption, 'detected_objects_str': detected_objects_str, 'analysis_done': analysis_done })