# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license # Parameters nc: 80 # number of classes depth_multiple: 1.0 # model depth multiple width_multiple: 1.0 # layer channel multiple anchors: - [10, 13, 16, 30, 33, 23] # P3/8 - [30, 61, 62, 45, 59, 119] # P4/16 - [116, 90, 156, 198, 373, 326] # P5/32 # YOLOv5 v6.0 backbone backbone: # [from, number, module, args] [ [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 [-1, 3, C3, [128]], [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 [-1, 6, C3, [256]], [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 [-1, 9, C3, [512]], [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 [-1, 3, C3, [1024]], [-1, 1, SPPF, [1024, 5]], # 9 ] # YOLOv5 v6.0 FPN head head: [ [-1, 3, C3, [1024, False]], # 10 (P5/32-large) [-1, 1, nn.Upsample, [None, 2, "nearest"]], [[-1, 6], 1, Concat, [1]], # cat backbone P4 [-1, 1, Conv, [512, 1, 1]], [-1, 3, C3, [512, False]], # 14 (P4/16-medium) [-1, 1, nn.Upsample, [None, 2, "nearest"]], [[-1, 4], 1, Concat, [1]], # cat backbone P3 [-1, 1, Conv, [256, 1, 1]], [-1, 3, C3, [256, False]], # 18 (P3/8-small) [[18, 14, 10], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) ]