import torch import torch.nn.functional as F from transformers import WhisperForConditionalGeneration, WhisperProcessor from transformers.models.whisper.tokenization_whisper import LANGUAGES from transformers.pipelines.audio_utils import ffmpeg_read import gradio as gr model_id = "mageec/whisper-tiny-hi-capstone" device = "cuda" if torch.cuda.is_available() else "cpu" processor = WhisperProcessor.from_pretrained(model_id) model = WhisperForConditionalGeneration.from_pretrained(model_id) model.eval() model.to(device) sampling_rate = processor.feature_extractor.sampling_rate bos_token_id = processor.tokenizer.all_special_ids[-106] decoder_input_ids = torch.tensor([1,bos_token_id]).to(device) def process_audio_file(file): with open(file, "rb") as f: inputs = f.read() audio = ffmpeg_read(inputs, sampling_rate) return audio def transcribe(Microphone, File_Upload): warn_output = "" if (Microphone is not None) and (File_Upload is not None): warn_output = "WARNING: You've uploaded an audio file and used the microphone. " \ "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" file = Microphone elif (Microphone is None) and (File_Upload is None): return "ERROR: You have to either use the microphone or upload an audio file" elif Microphone is not None: file = Microphone else: file = File_Upload audio_data = process_audio_file(file) input_features = processor(audio_data, return_tensors="pt").input_features with torch.no_grad(): logits = model.forward(input_features.to(device), decoder_input_ids=decoder_input_ids).logits pred_ids = torch.argmax(logits, dim=-1) probability = F.softmax(logits, dim=-1).max() lang_ids = processor.decode(pred_ids[0]) lang_ids = lang_ids.lstrip("<|").rstrip("|>") language = LANGUAGES.get(lang_ids, "not detected") return language.capitalize(), probability.cpu().numpy() iface = gr.Interface( fn=transcribe, inputs=[ gr.inputs.Audio(source="microphone", type='filepath', optional=True), gr.inputs.Audio(source="upload", type='filepath', optional=True), ], outputs=[ gr.outputs.Textbox(label="Language"), gr.Number(label="Probability"), ], layout="horizontal", theme="huggingface", title="Whisper Language Identification", description="Demo for Language Identification using OpenAI's [Whisper Large V2](https://huggingface.co/openai/whisper-large-v2).", allow_flagging='never', ) iface.launch(enable_queue=True, server_name="ubuntu")