from kani import Kani
from kani.engines.ctransformers.llama2 import LlamaCTransformersEngine
import gradio as gr
title = """
kani (カニ) demo
"""
description = """This is the kani chat demo with llama v2 ggml (cpu only!)
"""
article = """"""
ai = None
def user(message, history):
history = history or []
# Append the user's message to the conversation history
history.append([message, ""])
return "", history
async def chat(history, limit: int = 1024, temp: float = 0.8, top_k: int = 40, top_p: float = 0.9, repeat_penalty: float = 1.1):
history = history or []
message = history[-1][0]
history[-1][1] = ""
global ai
if ai is None:
model_id = "TheBloke/Llama-2-7B-Chat-GGML"
model_file = "llama-2-7b-chat.ggmlv3.q3_K_M.bin"
engine = LlamaCTransformersEngine(model_id,
model_file,
max_new_tokens = int(limit),
temperature = float(temp),
top_k = int(top_k),
top_p = float(top_p),
repetition_penalty = float(repeat_penalty),
batch_size = 512,
)
ai = Kani(
engine,
system_prompt=(
"You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. "
" Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content."
" Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not"
" make any sense, or is not factually coherent, explain why instead of answering something not correct. If you"
" don't know the answer to a question, please don't share false information."
),
)
async for output in ai.full_round_str(
message
):
answer = output
history[-1][1] += answer
# stream the response
yield history, history
def clear_state(history, chat_message):
history = []
global ai
ai = None
return history, gr.update(placeholder='Chat here')
def start():
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown(article)
with gr.Row():
with gr.Column(scale=0.5):
max_tokens = gr.Slider(1, 1024, label="Max Tokens", step=1, value=512)
temperature = gr.Slider(0.0, 1.0, label="Temperature", step=0.05, value=0.8)
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.95)
top_k = gr.Slider(0, 100, label="Top K", step=1, value=40)
repeat_penalty = gr.Slider(0.0, 2.0, label="Repetition Penalty", step=0.1, value=1.1)
with gr.Column():
chatbot = gr.Chatbot(label='Llama v2')
message = gr.Textbox(label='User', placeholder='Chat here')
history = gr.State()
with gr.Row():
submit = gr.Button(value="Send message", variant="secondary").style(full_width=True)
clear = gr.Button(value="Reset", variant="secondary").style(full_width=False)
clear.click(clear_state, inputs=[history, message], outputs=[history, message], queue=False)
submit_click_event = submit.click(
fn=user, inputs=[message, history], outputs=[message, history], queue=True
).then(
fn=chat, inputs=[history, max_tokens, temperature, top_p, top_k, repeat_penalty], outputs=[chatbot, history], queue=True
)
message_submit_event = message.submit(
fn=user, inputs=[message, history], outputs=[message, history], queue=True
).then(
fn=chat, inputs=[history, max_tokens, temperature, top_p, top_k, repeat_penalty], outputs=[chatbot, history], queue=True
)
demo.launch(enable_queue=True)
start()