import tensorflow as tf import cv2 import numpy as np def classify(img): im = img lt = ["other","Bone","Brain","eye","kidney","chest","skin"] im = cv2.resize(im,(52,52)) model = tf.keras.models.load_model("all-in-one.h5",compile=False) result = model.predict(np.array([im])) a = np.argmax(result) c="" st.write('________________________________________________') if a==0: return "Provide the medical Imaging of the mentioned categories" st.write('________________________________________________') if a==1: c = bone_net(im) if a==2: c = brain_net(im) if a==3: c = Eye_net(im) if a==4: c = kidney_net(im) if a==5: c = chest_net(im) if a==6: c = skin_net(im) return c def bone_net(img): # img = cv2.resize(img,(224,224)) lt = ["Normal",'Fractured'] model = tf.keras.models.load_model("fracture.h5",compile=False) result = model.predict(np.array([img])) ans = np.argmax(result) return lt[ans] def brain_net(img): lt = ['pituitary', 'notumor', 'meningioma', 'glioma'] # img = cv2.resize(img,(52,52)) model = tf.keras.models.load_model("brain.h5",compile=False) result = model.predict(np.array([img])) ans = np.argmax(result) return lt[ans] def chest_net(img): lt = ['PNEUMONIA', 'NORMAL'] # img = cv2.resize(img,(224,224)) model = tf.keras.models.load_model("chest.h5",compile=False) result = model.predict(np.array([img])) ans = np.argmax(result) return lt[ans] def Eye_net(img): lt = ['glaucoma', 'normal', 'diabetic_retinopathy', 'cataract'] # img = cv2.resize(img,(224,224)) model = tf.keras.models.load_model("eye.h5",compile=False) result = model.predict(np.array([img])) ans = np.argmax(result) return lt[ans] def kidney_net(img): lt = ['Cyst', 'Tumor', 'Stone', 'Normal'] # img = cv2.resize(img,(224,224)) model = tf.keras.models.load_model("kidney.h5",compile=False) result = model.predict(np.array([img])) ans = np.argmax(result) return lt[ans] def skin_net(img): lt = ['pigmented benign keratosis', 'melanoma', 'vascular lesion', 'actinic keratosis', 'squamous cell carcinoma', 'basal cell carcinoma', 'seborrheic keratosis', 'dermatofibroma', 'nevus'] # img = cv2.resize(img,(224,224)) model = tf.keras.models.load_model("skin.h5",compile=False) result = model.predict(np.array([img])) ans = np.argmax(result) return lt[ans]