import io import os import numpy as np import streamlit as st import requests from PIL import Image from model import classify import cv2 @st.cache(allow_output_mutation=True) # def get_model(): # return bone_frac() # pred_model = get_model() # pred_model=bone_frac() def predict(): c=classify('tmp.jpg') st.markdown('#### Predicted Captions:') st.write(c) st.title('Health Vision') st.markdown('### What we can do?') st.write('-Detect Brain tumors') st.write('-Detect Pnuemonia') st.write('-Detect Bone Fractures') st.write('-Detect Skin infections') st.write('-Detect Kidney Stones') st.write('-Detect Eye infections') st.write('') st.write('(Note:The results may not be correct always its better to have a second opnion)') # img_url = st.text_input(label='Enter Image URL') # if (img_url != "") and (img_url != None): # img = Image.open(requests.get(img_url, stream=True).raw) # img = img.convert('RGB') # st.image(img) # img.save('tmp.jpg') # predict() # os.remove('tmp.jpg') hide_streamlit_style = """ """ st.markdown(hide_streamlit_style, unsafe_allow_html=True) # st.markdown('
OR
', unsafe_allow_html=True) img_upload = st.file_uploader(label='Upload Image', type=['jpg', 'png', 'jpeg']) if img_upload != None: img = img_upload.read() img = Image.open(io.BytesIO(img)) img = img.convert('RGB') img=np.asarray(img) print(img) # img=cv2.imread(img) # img.save('tmp.jpg') st.image(img) c,b=classify(img) st.markdown('#### Possible Disease Prediction:') st.write(c) st.write('________________________________________________') st.markdown('#### Precautions To Be Taken :') st.write('________________________________________________') st.write(b) # st.write(b) # predict() # os.remove('tmp.jpg')