import spaces import os import gradio as gr import torch from transformers import AutoTokenizer, TextStreamer, pipeline, AutoModelForCausalLM from langchain_community.embeddings import HuggingFaceInstructEmbeddings from langchain_community.vectorstores import Chroma from langchain.prompts import PromptTemplate from langchain.chains import RetrievalQA from langchain_community.llms import HuggingFacePipeline DEFAULT_SYSTEM_PROMPT = """ You are a ROS2 expert assistant. Based on the context provided, give direct and concise answers. If the information is not in the context, respond with "I don't find that information in the available documentation." Keep responses to 1-2 lines maximum. """.strip() PREDEFINED_QUESTIONS = [ "Select a question...", "Tell me how can I navigate to a specific pose - include replanning aspects in your answer.", "Can you provide me with code for this task?", "How do I set up obstacle avoidance in ROS2 navigation?", "What are the key parameters for tuning the nav2 planner?", "How do I integrate custom recovery behaviors?" ] def generate_prompt(context: str, question: str, system_prompt: str = DEFAULT_SYSTEM_PROMPT) -> str: return f""" [INST] <> {system_prompt} <> Context: {context} Question: {question} Answer: [/INST] """.strip() embeddings = HuggingFaceInstructEmbeddings( model_name="hkunlp/instructor-base", model_kwargs={"device": "cpu"} ) db = Chroma( persist_directory="db", embedding_function=embeddings ) def initialize_model(): model_id = "meta-llama/Llama-3.2-3B-Instruct" token = os.environ.get("HF_TOKEN") tokenizer = AutoTokenizer.from_pretrained(model_id, token=token) model = AutoModelForCausalLM.from_pretrained( model_id, token=token, device_map="cuda" if torch.cuda.is_available() else "cpu" ) return model, tokenizer def question_selected(question): if question == "Select a question...": return "" return question @spaces.GPU def respond(message, history, system_message, max_tokens, temperature, top_p): try: history = history or [] if not message.strip(): history.append((message, "Please enter a question or select one from the dropdown menu.")) return history model, tokenizer = initialize_model() retriever = db.as_retriever(search_kwargs={"k": 2}) docs = retriever.get_relevant_documents(message) context = "\n".join([doc.page_content for doc in docs]) prompt = generate_prompt(context=context, question=message, system_prompt=system_message) text_pipeline = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, repetition_penalty=1.15 ) output = text_pipeline( prompt, return_full_text=False, max_new_tokens=max_tokens )[0]['generated_text'] history.append((message, output.strip())) return history except Exception as e: history.append((message, f"An error occurred: {str(e)}")) return history def submit_and_clear(message, history, system_message, max_tokens, temperature, top_p): new_history = respond(message, history, system_message, max_tokens, temperature, top_p) return new_history, "" with gr.Blocks(title="ROS2 Expert Assistant") as demo: gr.Markdown("# ROS2 Expert Assistant") gr.Markdown("Ask questions about ROS2, navigation, and robotics. I'll provide concise answers based on the available documentation.") question_dropdown = gr.Dropdown( choices=PREDEFINED_QUESTIONS, value="Select a question...", label="Pre-defined Questions" ) chatbot = gr.Chatbot() msg = gr.Textbox( label="Your Question", placeholder="Type your question here or select one from the dropdown above...", lines=2 ) with gr.Row(): submit = gr.Button("Submit") clear = gr.Button("Clear") with gr.Accordion("Advanced Settings", open=False): # system_message = gr.Textbox( # value=DEFAULT_SYSTEM_PROMPT, # label="System Message", # lines=3 # ) max_tokens = gr.Slider( minimum=1, maximum=2048, value=500, step=1, label="Max new tokens" ) temperature = gr.Slider( minimum=0.1, maximum=4.0, value=0.1, step=0.1, label="Temperature" ) top_p = gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p" ) question_dropdown.change( question_selected, inputs=[question_dropdown], outputs=[msg] ) submit.click( submit_and_clear, inputs=[msg, chatbot, max_tokens, temperature, top_p], outputs=[chatbot, msg] ) clear.click(lambda: (None, ""), None, [chatbot, msg], queue=False) msg.submit( submit_and_clear, inputs=[msg, chatbot, max_tokens, temperature, top_p], outputs=[chatbot, msg] ) if __name__ == "__main__": demo.launch()