from threading import Thread from typing import Iterator import torch from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer model_id = 'tosin/dialogpt_afriwoz_pidgin' # https://huggingface.co/tosin/dialogpt_afriwoz_pidgin?text=How+I+fit+chop+for+here%3F #if torch.cuda.is_available(): config = AutoConfig.from_pretrained(model_id) config.pretraining_tp = 1 model = AutoModelForCausalLM.from_pretrained( model_id, config=config, #torch_dtype=torch.float16, #load_in_4bit=True, device_map='auto' ) #else: # model = None tokenizer = AutoTokenizer.from_pretrained(model_id) def get_prompt(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> str: #texts = [f'[INST] <>\n{system_prompt}\n<>\n\n'] texts = [system_prompt] # The first user input is _not_ stripped do_strip = False for user_input, response in chat_history: user_input = user_input.strip() if do_strip else user_input do_strip = True #texts.append(f'{user_input} [/INST] {response.strip()} [INST] ') texts.append(user_input) texts.append(response.strip()) message = message.strip() if do_strip else message texts.append(message) return ''.join(texts) def get_input_token_length(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> int: prompt = get_prompt(message, chat_history, system_prompt) input_ids = tokenizer([prompt], return_tensors='np', add_special_tokens=False)['input_ids'] return input_ids.shape[-1] def run(message: str, chat_history: list[tuple[str, str]], system_prompt: str, max_new_tokens: int = 1024, temperature: float = 0.8, top_p: float = 0.95, top_k: int = 50) -> Iterator[str]: prompt = get_prompt(message, chat_history, system_prompt) #inputs = tokenizer([prompt], return_tensors='pt', add_special_tokens=False).to('cuda') inputs = tokenizer([prompt], return_tensors='pt', add_special_tokens=False) streamer = TextIteratorStreamer(tokenizer, timeout=60, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( inputs, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, #top_p=top_p, #top_k=top_k, temperature=temperature, num_beams=1, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield ''.join(outputs)