from __future__ import annotations from argparse import ArgumentParser from importlib import import_module from pathlib import Path import gradio as gr import gradio.inputs import gradio.outputs import numpy as np import os from anomalib.deploy import Inferencer def get_inferencer(weight_path: Path, metadata_path: Path | None = None) -> Inferencer: """Parse args and open inferencer. Args: weight_path (Path): Path to model weights. metadata_path (Path | None, optional): Metadata is required for OpenVINO models. Defaults to None. Raises: ValueError: If unsupported model weight is passed. Returns: Inferencer: Torch or OpenVINO inferencer. """ inferencer: Inferencer module = import_module("anomalib.deploy") openvino_inferencer = getattr(module, "OpenVINOInferencer") print(f"weight path: {weight_path}") print(f"metadata path: {metadata_path}") inferencer = openvino_inferencer(path=weight_path, metadata_path=metadata_path) return inferencer def infer(radio: str, image: np.ndarray) -> tuple[np.ndarray, np.ndarray, np.ndarray]: """Inference function, return anomaly map, score, heat map, prediction mask ans visualisation. Args: image (np.ndarray): image to compute inferencer (Inferencer): model inferencer Returns: tuple[np.ndarray, float, np.ndarray, np.ndarray, np.ndarray]: heat_map, pred_mask, segmentation result. """ # Perform inference for the given image. print(f"Radio Value: {radio.lower()}") print(f"{os.getcwd()}") weight_path = f"cfa/mvtec/{radio.lower()}/run/weights/openvino/model.onnx" metadata_path = f"cfa/mvtec/{radio.lower()}/run/weights/openvino/metadata.json" inferencer = get_inferencer(weight_path, metadata_path) predictions = inferencer.predict(image=image) return (predictions.heat_map, predictions.pred_mask, predictions.segmentations) if __name__ == "__main__": interface = gr.Interface( fn=lambda radio, image: infer(radio, image), inputs=[ gr.Radio( [ "Bottle", "Cable", "Capsule", "Carpet", "Grid", "Hazelnut", "Leather", "Metal_nut", "Pill", "Screw", "Tile", "Toothbrush", "Transistor", "Wood", "Zipper", ], label="MVTEC Class Name", value="Bottle", ).style(height=400), gradio.inputs.Image( shape=None, image_mode="RGB", source="upload", tool="editor", type="numpy", label="Image" ).style(height=350), ], outputs=[ gradio.outputs.Image(type="numpy", label="Predicted Heat Map").style(height=200), gradio.outputs.Image(type="numpy", label="Predicted Mask").style(height=200), gradio.outputs.Image(type="numpy", label="Segmentation Result").style(height=200), ], examples=[ ["Bottle", "sample_images/bottle.png"], ["Cable", "sample_images/cable.png"], ["Capsule", "sample_images/capsule.png"], ["Carpet", "sample_images/carpet.png"], ["Grid", "sample_images/grid.png"], ["Hazelnut", "sample_images/hazelnut.png"], ["Leather", "sample_images/leather.png"], ["Metal_nut", "sample_images/metal_nut.png"], ["Pill", "sample_images/pill.png"], ["Screw", "sample_images/screw.png"], ["Tile", "sample_images/tile.png"], ["Toothbrush", "sample_images/toothbrush.png"], ["Transistor", "sample_images/transistor.png"], ["Wood", "sample_images/wood.png"], ["Zipper", "sample_images/zipper.png"], ], title="Anomaly Detection", description="Anomlay Detection on Industrial Images", css=".output-image, .image-preview {height: 300px !important}", allow_flagging="never", ) interface.launch(share=True)