import os import torch from transformers import ( AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, pipeline ) import streamlit as st from langchain_community.vectorstores import FAISS from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.llms import HuggingFacePipeline from transformers import BitsAndBytesConfig from langchain.prompts import PromptTemplate from langchain.schema.runnable import RunnablePassthrough from langchain.chains import LLMChain import transformers import transformers from transformers import pipeline from datasets import load_dataset import transformers model_name='mistralai/Mistral-7B-Instruct-v0.1' from huggingface_hub import login login(token=st.secrets["HF_TOKEN"]) model_config = transformers.AutoConfig.from_pretrained( model_name, ) tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "right" ################################################################# # bitsandbytes parameters ################################################################# # Activate 4-bit precision base model loading use_4bit = True # Compute dtype for 4-bit base models bnb_4bit_compute_dtype = "float16" # Quantization type (fp4 or nf4) bnb_4bit_quant_type = "nf4" # Activate nested quantization for 4-bit base models (double quantization) use_nested_quant = False ################################################################# # Set up quantization config ################################################################# compute_dtype = getattr(torch, bnb_4bit_compute_dtype) bnb_config = BitsAndBytesConfig( load_in_4bit=use_4bit, bnb_4bit_quant_type=bnb_4bit_quant_type, bnb_4bit_compute_dtype=compute_dtype, bnb_4bit_use_double_quant=use_nested_quant, ) ############################################################# # Load pre-trained config ################################################################# model = AutoModelForCausalLM.from_pretrained( "mistralai/Mistral-7B-Instruct-v0.1",quantization_config=bnb_config, ) dataset= load_dataset("mery22/testub/test-1.pdf") loader = PyPDFLoader(dataset) data = loader.load() text_splitter1 = CharacterTextSplitter(chunk_size=512, chunk_overlap=0,separator="\n\n") texts = text_splitter1.split_documents(data) db = FAISS.from_documents(texts, HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L12-v2')) # Connect query to FAISS index using a retriever retriever = db.as_retriever( search_type="mmr", search_kwargs={'k': 1} ) from langchain.llms import HuggingFacePipeline from langchain.prompts import PromptTemplate from langchain.embeddings.huggingface import HuggingFaceEmbeddings text_generation_pipeline = transformers.pipeline( model=model, tokenizer=tokenizer, task="text-generation", temperature=0.02, repetition_penalty=1.1, return_full_text=True, max_new_tokens=512, ) prompt_template = """ ### [INST] Instruction: You are a Q&A assistant. Your goal is to answer questions as accurately as possible based on the instructions and context provided without using prior knowledge.You answer in FRENCH Analyse carefully the context and provide a direct answer based on the context. Answer in french only {context} Vous devez répondre aux questions en français. ### QUESTION: {question} [/INST] Answer in french only Vous devez répondre aux questions en français. """ mistral_llm = HuggingFacePipeline(pipeline=text_generation_pipeline) # Create prompt from prompt template prompt = PromptTemplate( input_variables=["question"], template=prompt_template, ) # Create llm chain llm_chain = LLMChain(llm=mistral_llm, prompt=prompt) from langchain.chains import RetrievalQA retriever.search_kwargs = {'k':1} qa = RetrievalQA.from_chain_type( llm=mistral_llm, chain_type="stuff", retriever=retriever, chain_type_kwargs={"prompt": prompt}, ) import streamlit as st # Streamlit interface st.title("Chatbot Interface") # Define function to handle user input and display chatbot response def chatbot_response(user_input): response = qa.get_answer(user_input) return response # Streamlit components user_input = st.text_input("You:", "") submit_button = st.button("Send") # Handle user input if submit_button: if user_input.strip() != "": bot_response = chatbot_response(user_input) st.text_area("Bot:", value=bot_response, height=200) else: st.warning("Please enter a message.")