import glob import gradio as gr import numpy as np from os import environ from PIL import Image from torchvision import transforms as T from transformers import MaskFormerForInstanceSegmentation, MaskFormerImageProcessor example_images = sorted(glob.glob('examples/map*.jpg')) ade_mean=[0.485, 0.456, 0.406] ade_std=[0.229, 0.224, 0.225] test_transform = T.Compose([ T.ToTensor(), T.Normalize(mean=ade_mean, std=ade_std) ]) palette = [ [120, 120, 120], [4, 200, 4], [4, 4, 250], [6, 230, 230], [80, 50, 50], [120, 120, 80], [140, 140, 140], [204, 5, 255] ] model_id = f"thiagohersan/maskformer-satellite-trees" vegetation_labels = ["vegetation"] # preprocessor = MaskFormerImageProcessor.from_pretrained(model_id) preprocessor = MaskFormerImageProcessor( do_resize=False, do_normalize=False, do_rescale=False, ignore_index=255, reduce_labels=False ) hf_token = environ.get('HFTOKEN') model = MaskFormerForInstanceSegmentation.from_pretrained(model_id, use_auth_token=hf_token) def visualize_instance_seg_mask(img_in, mask, id2label, included_labels): img_out = np.zeros((mask.shape[0], mask.shape[1], 3)) image_total_pixels = mask.shape[0] * mask.shape[1] label_ids = np.unique(mask) id2color = {id: palette[id] for id in label_ids} id2count = {id: 0 for id in label_ids} for i in range(img_out.shape[0]): for j in range(img_out.shape[1]): img_out[i, j, :] = id2color[mask[i, j]] id2count[mask[i, j]] = id2count[mask[i, j]] + 1 image_res = (0.5 * img_in + 0.5 * img_out).astype(np.uint8) dataframe = [[ f"{id2label[id]}", f"{(100 * id2count[id] / image_total_pixels):.2f} %", f"{np.sqrt(id2count[id] / image_total_pixels):.2f} m" ] for id in label_ids if id2label[id] in included_labels] if len(dataframe) < 1: dataframe = [[ f"", f"{(0):.2f} %", f"{(0):.2f} m" ]] return image_res, dataframe def query_image(image_path): img = np.array(Image.open(image_path)) img_size = (img.shape[0], img.shape[1]) inputs = preprocessor(images=test_transform(img), return_tensors="pt") outputs = model(**inputs) results = preprocessor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[img_size])[0] mask_img, dataframe = visualize_instance_seg_mask(img, results.numpy(), model.config.id2label, vegetation_labels) return mask_img, dataframe def get_system_memory(): memory = psutil.virtual_memory() memory_percent = memory.percent memory_used = memory.used / (1024.0 ** 3) memory_total = memory.total / (1024.0 ** 3) return {"percent": f"{memory_percent}%", "used": f"{memory_used:.3f}GB", "total": f"{memory_total:.3f}GB"} demo = gr.Interface( title="Maskformer Satellite+Trees", description="Using a finetuned version of the [facebook/maskformer-swin-base-ade](https://huggingface.co/facebook/maskformer-swin-base-ade) model (created specifically to work with satellite images) to calculate percentage of pixels in an image that belong to vegetation.", fn=query_image, inputs=[gr.Image(type="filepath", label="Input Image")], outputs=[ gr.Image(label="Vegetation"), gr.DataFrame(label="Info", headers=["Object Label", "Pixel Percent", "Square Length"]) ], examples=example_images, cache_examples=True, allow_flagging="never", analytics_enabled=None ) demo.launch(show_api=True)