# import the required libraries import gradio as gr import json from llmlingua import PromptCompressor import tiktoken # load the pre-trained models compressors = { "xlm-roberta-large": PromptCompressor( model_name="microsoft/llmlingua-2-xlm-roberta-large-meetingbank", use_llmlingua2=True, device_map="cpu" ), "mbert-base": PromptCompressor( model_name="microsoft/llmlingua-2-bert-base-multilingual-cased-meetingbank", use_llmlingua2=True, device_map="cpu" ) } tokenizer = tiktoken.encoding_for_model("gpt-4") with open('data/examples_MeetingBank.json', 'r') as f: examples = json.load(f) # list of examples, each example is a list of 3 group of values: idx (), original prompt (str), QA pairs (list of list of 2 strings) original_prompt_list = [[s["original_prompt"]] for s in examples] qa_list = [s["QA_pairs"] for s in examples] def compress(original_prompt, compression_rate, base_model="xlm-roberta-large", force_tokens=['\n'], chunk_end_tokens=['.', '\n']): if '\\n' in force_tokens: idx = force_tokens.index('\\n') force_tokens[idx] = '\n' compressor = compressors.get(base_model, compressors["mbert-base"]) results = compressor.compress_prompt_llmlingua2( original_prompt, rate=compression_rate, force_tokens=force_tokens, chunk_end_tokens=chunk_end_tokens, return_word_label=True, drop_consecutive=True ) compressed_prompt = results["compressed_prompt"] n_word_compressed = len(tokenizer.encode(compressed_prompt)) word_sep = "\t\t|\t\t" label_sep = " " lines = results["fn_labeled_original_prompt"].split(word_sep) preserved_tokens = [] for line in lines: word, label = line.rsplit(label_sep, 1) preserved_tokens.append((word, '+') if label == '1' else (word, None)) return compressed_prompt, preserved_tokens, n_word_compressed title = "LLMLingua-2" header = """# LLMLingua-2: Efficient and Faithful Task-Agnostic Prompt Compression via Data Distillation _Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin Xia, Xufang Luo, Jue Zhang, Qingwei Lin, Victor Ruehle, Yuqing Yang, Chin-Yew Lin, H. Vicky Zhao, Lili Qiu, Dongmei Zhang_
[[project page]](https://llmlingua.com/llmlingua2.html) [[paper]](https://arxiv.org/abs/2403.12968) [[code]](https://github.com/microsoft/LLMLingua)

💁‍♂️ This demo is deployed with HF "[CPU basic](https://huggingface.co/docs/hub/spaces-gpus)", the latency is expected to be longer. """ theme = "soft" css = """#anno-img .mask {opacity: 0.5; transition: all 0.2s ease-in-out;} #anno-img .mask.active {opacity: 0.7}""" original_prompt_text = """John: So, um, I've been thinking about the project, you know, and I believe we need to, uh, make some changes. I mean, we want the project to succeed, right? So, like, I think we should consider maybe revising the timeline. Sarah: I totally agree, John. I mean, we have to be realistic, you know. The timeline is, like, too tight. You know what I mean? We should definitely extend it. """ with gr.Blocks(title=title, css=css) as app: gr.Markdown(header) with gr.Row(): with gr.Column(scale=3): original_prompt = gr.Textbox(value=original_prompt_text, label="Original Prompt", lines=10, max_lines=10, interactive=True) compressed_prompt = gr.Textbox(value='', label="Compressed Prompt", lines=10, max_lines=10, interactive=False) with gr.Column(scale=1): base_model = gr.Radio(["mbert-base", "xlm-roberta-large"], label="Base Model", value="mbert-base", interactive=True) force_tokens = gr.Dropdown(['\\n', '.', '!', '?', ','], label="Tokens to Preserve", value=['\\n', '.', '!', '?', ','], multiselect=True, interactive=True) compression_rate = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.7, label="Compression rate", info="after compr. / befor compr.", interactive=True) n_word_original = gr.Textbox(lines=1, label="Original (GPT-4 Tokens)", interactive=False, value=len(tokenizer.encode(original_prompt_text))) n_word_compressed = gr.Textbox(lines=1, label="Compressed (GPT-4 Tokens)", interactive=False) button = gr.Button("⚡Click to Compress") with gr.Accordion(label="Compression Details", open=False): diff_text = gr.HighlightedText(label="Diff", combine_adjacent=False, show_legend=True, color_map={"+": "green"}) original_prompt.change(lambda x: len(tokenizer.encode(x)), inputs=[original_prompt], outputs=[n_word_original]) original_prompt.change(lambda x: ("", "", []), inputs=[original_prompt], outputs=[compressed_prompt, n_word_compressed, diff_text]) button.click(fn=compress, inputs=[original_prompt, compression_rate, base_model, force_tokens], outputs=[compressed_prompt, diff_text, n_word_compressed]) qa_pairs = gr.DataFrame(label="GPT-4 generated QA pairs related to the original prompt:", headers=["Question", "Answer"], interactive=True, value=[["Summarize the conversation.","John suggests making changes to the project, specifically revising the timeline to ensure its success. Sarah agrees with John, acknowledging that the current timeline is too tight and supports the idea of extending it."]]) gr.Markdown("## Examples (click to select)") dataset = gr.Dataset(label="MeetingBank", components=[gr.Textbox(visible=False, max_lines=3)], samples=original_prompt_list, type="index") dataset.select(fn=lambda idx: (examples[idx]["original_prompt"], examples[idx]["QA_pairs"]), inputs=[dataset], outputs=[original_prompt, qa_pairs]) app.queue(max_size=10, api_open=False).launch(show_api=False)