import streamlit as st from transformers import pipeline from PIL import Image def main(): st.set_page_config(page_title="Unmasked the Target Customers", page_icon="🦜") st.header("Turn the photos taken in the campaign to useful marketing insights") uploaded_file = st.file_uploader("Select an Image...") def pipeline_1_final(image_lst): pipe = pipeline("object-detection", model="hustvl/yolos-tiny") preds = pipe(image) person_count = 0 sub_image_lst = [] for pred in preds: if pred['label'] == 'person': person_count +=1 box = pred['box'] xmin, ymin, xmax, ymax = box.values() sub_image = extract_subimage(image,xmin, xmax, ymin, ymax) sub_image_lst += [sub_image] return sub_image_lst, person_count def pipeline_2_final(image_lst): age_lst = [] age_mapping = {"0-2": "lower than 10", "3-9": "lower than 10", "10-19":"10-19", "20-29":"20-29", "30-39":"30-39", "40-49":"40-49", "50-59":"50-59", "60-69":"60-69", "more than 70" : "70 or above"} pipe = pipeline("image-classification", model="nateraw/vit-age-classifier") for image in image_lst: preds = pipe(image) preds_age_range = preds[0]['label'] preds_age_range = age_mapping[preds_age_range] age_lst +=[preds_age_range] return age_lst def pipeline_3_final(image_lst): gender_lst = [] pipe = pipeline("image-classification", model="mikecho/NTQAI_pedestrian_gender_recognition_v1") for image in image_lst: preds = pipe(image) preds_gender = preds[0]['label'] gender_lst +=[preds_gender] return gender_lst def gender_prediciton_model_NTQAI_pedestrian_gender_recognition(image_lst): gender_lst = [] pipe = pipeline("image-classification", model="NTQAI/pedestrian_gender_recognition") for image in image_lst: preds = pipe(image) preds_gender = preds[0]['label'] gender_lst +=[preds_gender] return gender_lst def pipeline_4_final(image_lst): start_time = time.time() pipe = pipeline("image-classification", model="dima806/facial_emotions_image_detection") preds_lst = [] for image in image_lst: preds = pipe(image) preds_emotion = preds[0]['label'] preds_lst +=[preds_emotion] return preds_lst def generate_gender_tables(gender_list, age_list, emotion_list): gender_count = {} for gender, age, emotion in zip(gender_list, age_list, emotion_list): if age not in gender_count: gender_count[age] = {'male': 0, 'female': 0} gender_count[age][gender] += 1 happiness_percentage = {} for gender, age, emotion in zip(gender_list, age_list, emotion_list): if age not in happiness_percentage: happiness_percentage[age] = {'male': 0, 'female': 0} if emotion == 'happiness': happiness_percentage[age][gender] += 1 table1 = [] for age, count in gender_count.items(): male_count = count['male'] female_count = count['female'] table1.append([age, male_count, female_count]) table2 = [] for age, happiness in happiness_percentage.items(): male_count = gender_count[age]['male'] female_count = gender_count[age]['female'] male_percentage = (happiness['male'] / male_count) * 100 if male_count > 0 else 0 female_percentage = (happiness['female'] / female_count) * 100 if female_count > 0 else 0 table2.append([age, male_percentage, female_percentage]) return table1, table2 if uploaded_file is not None: print(uploaded_file) image = Image.open(file_name) st.image(uploaded_file, caption="Processing Image", use_column_width=True) pipeline_1_out, person_count = pipeline_1_final(image) pipeline_2_age = pipeline_2_final(pipeline_1_out) pipeline_3_gender = pipeline_3_final(pipeline_1_out) pipeline_4_emotion = pipeline_3_final(pipeline_1_out) table1, table2 = generate_gender_tables(pipeline_3_gender, pipeline_2_age, pipeline_4_emotion) st.text('The detected number of person:', person_count) st.text('\nGender and Age Group Distribution') st.text('Age, Male, Female') for row in table1: print(row) st.text('\nShare of Happniess') st.text('Age, Male, Female') for row in table2: print(row) if __name__ == "__main__": main()