# ------------------------------------------------------------------------------------------------ # Copyright (c) Chuan Guo. # ------------------------------------------------------------------------------------------------ # This code were adapted from the following open-source project: # https://github.com/EricGuo5513/HumanML3D # ------------------------------------------------------------------------------------------------ from .quaternion import * import scipy.ndimage.filters as filters class Skeleton(object): def __init__(self, offset, kinematic_tree, device): self.device = device self._raw_offset_np = offset.numpy() self._raw_offset = offset.clone().detach().to(device).float() self._kinematic_tree = kinematic_tree self._offset = None self._parents = [0] * len(self._raw_offset) self._parents[0] = -1 for chain in self._kinematic_tree: for j in range(1, len(chain)): self._parents[chain[j]] = chain[j-1] def njoints(self): return len(self._raw_offset) def offset(self): return self._offset def set_offset(self, offsets): self._offset = offsets.clone().detach().to(self.device).float() def kinematic_tree(self): return self._kinematic_tree def parents(self): return self._parents # joints (batch_size, joints_num, 3) def get_offsets_joints_batch(self, joints): assert len(joints.shape) == 3 _offsets = self._raw_offset.expand(joints.shape[0], -1, -1).clone() for i in range(1, self._raw_offset.shape[0]): _offsets[:, i] = torch.norm(joints[:, i] - joints[:, self._parents[i]], p=2, dim=1)[:, None] * _offsets[:, i] self._offset = _offsets.detach() return _offsets # joints (joints_num, 3) def get_offsets_joints(self, joints): assert len(joints.shape) == 2 _offsets = self._raw_offset.clone() for i in range(1, self._raw_offset.shape[0]): # print(joints.shape) _offsets[i] = torch.norm(joints[i] - joints[self._parents[i]], p=2, dim=0) * _offsets[i] self._offset = _offsets.detach() return _offsets # face_joint_idx should follow the order of right hip, left hip, right shoulder, left shoulder # joints (batch_size, joints_num, 3) def inverse_kinematics_np(self, joints, face_joint_idx, smooth_forward=False): assert len(face_joint_idx) == 4 '''Get Forward Direction''' l_hip, r_hip, sdr_r, sdr_l = face_joint_idx across1 = joints[:, r_hip] - joints[:, l_hip] across2 = joints[:, sdr_r] - joints[:, sdr_l] across = across1 + across2 eps = 1e-8 across = across / (np.sqrt((across**2).sum(axis=-1))[:, np.newaxis] + eps) # print(across1.shape, across2.shape) # forward (batch_size, 3) forward = np.cross(np.array([[0, 1, 0]]), across, axis=-1) if smooth_forward: forward = filters.gaussian_filter1d(forward, 20, axis=0, mode='nearest') # forward (batch_size, 3) eps = 1e-8 forward = forward / (np.sqrt((forward**2).sum(axis=-1))[..., np.newaxis] + eps) '''Get Root Rotation''' target = np.array([[0,0,1]]).repeat(len(forward), axis=0) root_quat = qbetween_np(forward, target) '''Inverse Kinematics''' # quat_params (batch_size, joints_num, 4) # print(joints.shape[:-1]) quat_params = np.zeros(joints.shape[:-1] + (4,)) # print(quat_params.shape) root_quat[0] = np.array([[1.0, 0.0, 0.0, 0.0]]) quat_params[:, 0] = root_quat # quat_params[0, 0] = np.array([[1.0, 0.0, 0.0, 0.0]]) for chain in self._kinematic_tree: R = root_quat for j in range(len(chain) - 1): # (batch, 3) u = self._raw_offset_np[chain[j+1]][np.newaxis,...].repeat(len(joints), axis=0) # print(u.shape) # (batch, 3) v = joints[:, chain[j+1]] - joints[:, chain[j]] eps = 1e-8 v = v / (np.sqrt((v**2).sum(axis=-1))[:, np.newaxis] + eps) # print(u.shape, v.shape) rot_u_v = qbetween_np(u, v) R_loc = qmul_np(qinv_np(R), rot_u_v) quat_params[:,chain[j + 1], :] = R_loc R = qmul_np(R, R_loc) return quat_params # Be sure root joint is at the beginning of kinematic chains def forward_kinematics(self, quat_params, root_pos, skel_joints=None, do_root_R=True): # quat_params (batch_size, joints_num, 4) # joints (batch_size, joints_num, 3) # root_pos (batch_size, 3) if skel_joints is not None: offsets = self.get_offsets_joints_batch(skel_joints) if len(self._offset.shape) == 2: offsets = self._offset.expand(quat_params.shape[0], -1, -1) joints = torch.zeros(quat_params.shape[:-1] + (3,)).to(self.device) joints[:, 0] = root_pos for chain in self._kinematic_tree: if do_root_R: R = quat_params[:, 0] else: R = torch.tensor([[1.0, 0.0, 0.0, 0.0]]).expand(len(quat_params), -1).detach().to(self.device) for i in range(1, len(chain)): R = qmul(R, quat_params[:, chain[i]]) offset_vec = offsets[:, chain[i]] joints[:, chain[i]] = qrot(R, offset_vec) + joints[:, chain[i-1]] return joints # Be sure root joint is at the beginning of kinematic chains def forward_kinematics_np(self, quat_params, root_pos, skel_joints=None, do_root_R=True): # quat_params (batch_size, joints_num, 4) # joints (batch_size, joints_num, 3) # root_pos (batch_size, 3) if skel_joints is not None: skel_joints = torch.from_numpy(skel_joints) offsets = self.get_offsets_joints_batch(skel_joints) if len(self._offset.shape) == 2: offsets = self._offset.expand(quat_params.shape[0], -1, -1) offsets = offsets.numpy() joints = np.zeros(quat_params.shape[:-1] + (3,)) joints[:, 0] = root_pos for chain in self._kinematic_tree: if do_root_R: R = quat_params[:, 0] else: R = np.array([[1.0, 0.0, 0.0, 0.0]]).repeat(len(quat_params), axis=0) for i in range(1, len(chain)): R = qmul_np(R, quat_params[:, chain[i]]) offset_vec = offsets[:, chain[i]] joints[:, chain[i]] = qrot_np(R, offset_vec) + joints[:, chain[i - 1]] return joints def forward_kinematics_cont6d_np(self, cont6d_params, root_pos, skel_joints=None, do_root_R=True): # cont6d_params (batch_size, joints_num, 6) # joints (batch_size, joints_num, 3) # root_pos (batch_size, 3) if skel_joints is not None: skel_joints = torch.from_numpy(skel_joints) offsets = self.get_offsets_joints_batch(skel_joints) if len(self._offset.shape) == 2: offsets = self._offset.expand(cont6d_params.shape[0], -1, -1) offsets = offsets.numpy() joints = np.zeros(cont6d_params.shape[:-1] + (3,)) joints[:, 0] = root_pos for chain in self._kinematic_tree: if do_root_R: matR = cont6d_to_matrix_np(cont6d_params[:, 0]) else: matR = np.eye(3)[np.newaxis, :].repeat(len(cont6d_params), axis=0) for i in range(1, len(chain)): matR = np.matmul(matR, cont6d_to_matrix_np(cont6d_params[:, chain[i]])) offset_vec = offsets[:, chain[i]][..., np.newaxis] # print(matR.shape, offset_vec.shape) joints[:, chain[i]] = np.matmul(matR, offset_vec).squeeze(-1) + joints[:, chain[i-1]] return joints def forward_kinematics_cont6d(self, cont6d_params, root_pos, skel_joints=None, do_root_R=True): # cont6d_params (batch_size, joints_num, 6) # joints (batch_size, joints_num, 3) # root_pos (batch_size, 3) if skel_joints is not None: # skel_joints = torch.from_numpy(skel_joints) offsets = self.get_offsets_joints_batch(skel_joints) if len(self._offset.shape) == 2: offsets = self._offset.expand(cont6d_params.shape[0], -1, -1) joints = torch.zeros(cont6d_params.shape[:-1] + (3,)).to(cont6d_params.device) joints[..., 0, :] = root_pos for chain in self._kinematic_tree: if do_root_R: matR = cont6d_to_matrix(cont6d_params[:, 0]) else: matR = torch.eye(3).expand((len(cont6d_params), -1, -1)).detach().to(cont6d_params.device) for i in range(1, len(chain)): matR = torch.matmul(matR, cont6d_to_matrix(cont6d_params[:, chain[i]])) offset_vec = offsets[:, chain[i]].unsqueeze(-1) # print(matR.shape, offset_vec.shape) joints[:, chain[i]] = torch.matmul(matR, offset_vec).squeeze(-1) + joints[:, chain[i-1]] return joints