from collections.abc import Sequence import mmcv import numpy as np import torch from mmcv.parallel import DataContainer as DC from ..builder import PIPELINES def to_tensor(data): """Convert objects of various python types to :obj:`torch.Tensor`. Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`, :class:`Sequence`, :class:`int` and :class:`float`. """ if isinstance(data, torch.Tensor): return data elif isinstance(data, np.ndarray): return torch.from_numpy(data) elif isinstance(data, Sequence) and not mmcv.is_str(data): return torch.tensor(data) elif isinstance(data, int): return torch.LongTensor([data]) elif isinstance(data, float): return torch.FloatTensor([data]) else: raise TypeError( f'Type {type(data)} cannot be converted to tensor.' 'Supported types are: `numpy.ndarray`, `torch.Tensor`, ' '`Sequence`, `int` and `float`') @PIPELINES.register_module() class ToTensor(object): def __init__(self, keys): self.keys = keys def __call__(self, results): for key in self.keys: results[key] = to_tensor(results[key]) return results def __repr__(self): return self.__class__.__name__ + f'(keys={self.keys})' @PIPELINES.register_module() class Transpose(object): def __init__(self, keys, order): self.keys = keys self.order = order def __call__(self, results): for key in self.keys: results[key] = results[key].transpose(self.order) return results def __repr__(self): return self.__class__.__name__ + \ f'(keys={self.keys}, order={self.order})' @PIPELINES.register_module() class Collect(object): """Collect data from the loader relevant to the specific task. This is usually the last stage of the data loader pipeline. Args: keys (Sequence[str]): Keys of results to be collected in ``data``. meta_keys (Sequence[str], optional): Meta keys to be converted to ``mmcv.DataContainer`` and collected in ``data[motion_metas]``. Default: ``('filename', 'ori_filename', 'ori_shape', 'motion_shape', 'motion_mask')`` Returns: dict: The result dict contains the following keys - keys in``self.keys`` - ``motion_metas`` if available """ def __init__(self, keys, meta_keys=('filename', 'ori_filename', 'ori_shape', 'motion_shape', 'motion_mask')): self.keys = keys self.meta_keys = meta_keys def __call__(self, results): data = {} motion_meta = {} for key in self.meta_keys: if key in results: motion_meta[key] = results[key] data['motion_metas'] = DC(motion_meta, cpu_only=True) for key in self.keys: data[key] = results[key] return data def __repr__(self): return self.__class__.__name__ + \ f'(keys={self.keys}, meta_keys={self.meta_keys})' @PIPELINES.register_module() class WrapFieldsToLists(object): """Wrap fields of the data dictionary into lists for evaluation. This class can be used as a last step of a test or validation pipeline for single image evaluation or inference. Example: >>> test_pipeline = [ >>> dict(type='LoadImageFromFile'), >>> dict(type='Normalize', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True), >>> dict(type='ImageToTensor', keys=['img']), >>> dict(type='Collect', keys=['img']), >>> dict(type='WrapIntoLists') >>> ] """ def __call__(self, results): # Wrap dict fields into lists for key, val in results.items(): results[key] = [val] return results def __repr__(self): return f'{self.__class__.__name__}()'